
Tiffin and MGen: An Expressive Policy Language

with Multiple Runtime Monitoring Tools

Zak Fry, Hajime Inoue, Cameron Swords, Wei-Cheng Wu, Lucja Kot

2
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Outline

▪ Problem Statement and State of the Art

▪ Tiffin Policy Language

▪ MGen: Model Generator

▪ Deployment Use Cases

▪ Questions and Discussion

3
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Problem Statement

▪ In spite of heavy investment, cyber-attacks are an

increasing threat:
– IP and information theft: $6 Trillion dollars of damage globally in 2021

– Targeting US defense agencies, and tech companies per month

▪ Software: increasingly complex, mission-critical; use of

inter-connected systems and deployment frameworks

▪ 0-day exploits, ransomware, insider threat all pervasive

▪ Modern security practices can’t keep up with current and

emergent cyber-attacks

4
STATEMENT A: APPROVED FOR PUBLIC RELEASE

State of the Art

Common Limitations and Restrictions
▪ Pattern matching known-bad patterns

– Constant updates, limited 0-day capabilities

▪ Domain specificity, Limited scope
– Specific system and fault/error/vulnerability types

▪ Limited Mitigation capabilities
– Often only provide limited forensic evidence

▪ Require considerable human effort
– Manual specification or instrumentation – scalability

5
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Tiffin: Enforceable Runtime Policies

▪ Mechanism: define correct program behavior and
state over critical points in individual programs

▪ Autonomics: both identifies and mitigates known
and unknown attacks

▪ Insights:
– Policies outlining correct behavior – guard against unknown attacks

– Per-program models – generalizable, customizable

– Diverse specification mechanisms – flexible, performant

– Defines context-specific and deployment-specific behavior – specificity

6
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Tiffin: Monitor Expressivity

Monitor Type Preferred Instrumentation Example Use Case

Invariant
DynamoRIO, Binary
Rewriting

Check for valid server response data
before transmitting information

State Machine
DynamoRIO, Source
Rewriting (future)

Ensure authentication before
protected actions occur

Memory Safety Hypervisor Plugin
Guarantee consistent module write
patterns to avoid trojans/overflows

Fuzzing Framework DynamoRIO
Test for unexpected values in user-
supplied data parser

7
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Tiffin: Monitor Expressivity

Mitigation Type Example Use Case

Alter Internal State Change webserver response for malicious request

Skip Instructions Avoid malicious write mid-execution, continue normal execution

Abort Program Prevent information exfiltration during active attack

Print Message Output helpful program state information for manual forensics

Return from
Function (future)

Halt an infinite loop without stopping full program execution

8
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Tiffin: Mitigation Specification

instr authenticate:
loc: function entry “user_authenticate" “auth.c”
args: cexpr string user_ip

instr protected_access:
loc: line “serve.c" 522
args: cexpr int req->ip

action block_request:
loc: line “serve.c" 522
update(cexpr int req->ret_code, 403)

state_machine validate_access[ip]:
Start -> authenticate(id) -> protected_access(ip) -> Start
Start -> protected_access(ip) { block_request() } -> Start

Instrumentation:
function

Instrumentation:
source line

Policy:
state machine

Action:
state change

9
STATEMENT A: APPROVED FOR PUBLIC RELEASE

MGen: Deployable Runtime Checkers

▪ Mechanism: translate high-level specification to

low-level, deployable runtime checkers

▪ Insights:
– Push-button automation – usability, rapid deployment

– Integrated binary analysis – generalizable to arbitrary programs

– Multiple back-ends – flexible, wider deployability

– Optional preliminary policy generation – ease initial user burden, handle

code evolution

10
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Runtime Monitor Generation

Monitor Generation

▪ Mgen: translate high-level

spec to low-level checker

▪ Back-ends target various

instrumentation frameworks

▪ Big challenge: how to convert

source-level locations into

runtime binary locations for

instrumentation? “Value of

node->value at line 67 of

stack.c” is non-trivial.

– DWARF parser and

analysis

Application
Binary

Runtime
Policy

DynamoRIO Client

Instrumentation
Defs

Monitors &
Responses

mgen
Model Generation Tool

Rewritten
Binary

GT Hypervisor

Header
Files:

Monitors
&

Responses

11
STATEMENT A: APPROVED FOR PUBLIC RELEASE

MGen: DWARF Deep Dive

▪ GrammaTech python library,

Dwalin, to extract variable

locations from DWARF debug

symbols

▪ Handles C/C++ binaries, using

monitor source locations to

resolve instrumentation info

needs

▪ Future: direct binary analysis

and/or source instrumentation

to lift DWARF requirement

python> dwarf_info = make_dwarf_info(
‘nginx_x64', {}, IsaEnum.X64, debug=0)

python> dwarf_info.lookup_c_expr(
‘req->ip', ‘nginx_64’,
‘serve.c', '0x4f1a40')

FieldOffset(
base=Location(

location='%rbp + 16 - 176',
type_addr='0x429',
type_size='0x80',

),
offset=Constant(value=0),
type_addr='0x419',
type_size='0x80',
deref=False

)

12
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Use Cases and Deployments

▪ Monitoring and mitigation for:

– General purpose Linux apps

– UEFI/firmware

– Deployed IoT devices

▪ Automated support for fuzz
testing

13
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Use Cases: Considerations

▪ Linux apps: wide range of functionality

▪ UEFI: limited monitoring options

▪ IoT: resource constraints, connectivity

▪ Fuzz testing: additional information needs

14
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Use Cases: Solutions

▪ Linux apps: diverse, flexible specification
mechanisms

▪ UEFI: bespoke hypervisor clients, memory
introspection

▪ IoT: binary rewriting, focused policies

▪ Fuzz testing: language additions, specialized
clients

15
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Deployment: Multi-Layer Security Solution

User App User App Server App Server App

Reasoning

Engine

Automated

Patch

Generator

Manual

Repair

Long-term and recurrent problems result

in longer-term responses, e.g., automated

patch generation, manual remediation.

Deploy local monitor policies to running

applications. Policies watch for malicious

behavior and carry out local reflex

responses.

Report monitor events to “big picture”

reasoning engine to track overall system

health; detect additional and multi-program

attacks. Engine carries secondary

responses. Web UI

Monitor Monitor Monitor Monitor

App App App App

16
STATEMENT A: APPROVED FOR PUBLIC RELEASE

NGINX Webserver Example

Plugins Content

DynamoRIO

Monitor
Client

Requests for content/
plugins that don’t exist?

YES NO

▪ Problem: Bots probe public servers
looking for known-vulnerable
modules and secure content

▪ Autonomic Solution:

– Monitor: Use Tiffin-internal
variable per-IP to count accesses
to non-existent pages/content

– Mitigation: Block individual or
ranges of IPs from initiating
requests entirely

17
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Protecting Firmware

Initial Semantic Modeling and Checking technology is tailored to firmware:

▪ No operating system

▪ Single address space

▪ Initially inspired by Region-Based Write Access Control (RBWAC), by Shapiro

(Dartmouth)

UEFI is firmware:

▪ Used on PCs, but also: printers, routers, switches, storage devices, phones

▪ Interface between OS and bare hardware

▪ BIOS: Basic Input/Output System

▪ UEFI: Unified Extensible Firmware Interface

– IA-32, ARM32, x64, AArch64

18
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Memory Policies

Policy Strategy
– Policy breaks down into tuple of <what, where>

▪ What – What substage (code) is doing the writing

▪ Where – Which region (memory) is written to

– Policy is:
▪ Each substage policy is a set of tuples: <code, memory>

▪ File accesses

▪ Allowed transitions between substages

▪ Prevent driver loads unless they match expected metadata

Code

Memory

19
STATEMENT A: APPROVED FOR PUBLIC RELEASE

IoT Security in the News

20
STATEMENT A: APPROVED FOR PUBLIC RELEASE

IoT Protection

Unsecured

• Attack propagates to all nodes
• Potential for information leak

or catastrophic failure
• May go unnoticed, if disguised
• No record of events, infection

IoT-specific deployment:

▪ Binary instrumentation for size, weight,
and power constrained devices

▪ Secured, distributed storage and
communication for forensics

Insights:

▪ Devices with limited connectivity and on
the network edge often require reflex
responses for effective threat mitigation

▪ IoT devices typically have a narrow
effective functionality, well suited for
our policies

21
STATEMENT A: APPROVED FOR PUBLIC RELEASE

▪ Attack: rewrite surveillance config to additionally store footage offsite

▪ IoT protection: Identify “normal” behavior

– Correctly identifies the single IP the controller sends feeds in practice

– Notices immediately when the attack leaks feeds to new IP; block’s traffic

– Allows users to immediately shut down node and reconfigure

Demo Scenario

Affected:

• Hospitals
• Tech (e.g., TESLA)
• Police Departments
• Prisons
• Schools
• Personal Homes

Surveillance
Controller

Secure On-site Storage

Off-site
attacker store

Evaluation

22
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Policy-Based Component Fuzzer

So far, policies protect at runtime – better to
discover bugs, malware, or
misconfiguration during testing

▪ Use Tiffin policy to guide fuzzing with policies,
instead of just checking correctness

▪ Infer metric against policy to inform mutator
engine: attempt to descend toward a policy
violation (instead of using coverage, etc.)

23
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Example: ArduPilot

ArduPilot bug*:

▪ Speed variable should not
drop below a constant
(inferred from reading
documentation)

▪ Straight-forward to express
this in policy and detect

Other applications: malicious
implants from supply chain
vulnerabilities

*Kim et al. RVFuzzer: Finding Input Validation Bugs in Robotic
Vehicles through Control-Guided Testing. USENIX Security 2019

instr fuzz_speed:
loc: line "AC_WPNav.cpp" 204
fuzz_mode: GRADIENT
fuzz speed_cms parameter (index 0),
from 0 to 300
fuzz_params: int speed_cms 0 0 300

instr speed_result:
At the end of set_speed_xy function
loc: line "AC_WPNav.cpp" 20
args: cexpr float speed_cms,

cexpr float _wp_speed_cms,
cexpr int WPNAV_WP_SPEED_MIN

invariant speed_update:
speed_cms > WPNAV_WP_SPEED_MIN

24
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Questions?

▪ Monitoring and mitigation for
general purpose Linux apps

▪ UEFI/firmware monitoring and
response

▪ Autonomic protections for IoT

▪ Automated support for fuzz
testing

25
STATEMENT A: APPROVED FOR PUBLIC RELEASE

State of the Art

▪ Domain specificity
– MaC (Viswanathan & Kim 2004) – reactive systems in terms of ω-languages

– Volz et al. (2011) – Monitoring semantics for distributed complex event processing

▪ Limited Scope
– MOSAICO (Muccini 2007) – Monitoring adherence to architectural specifications

– PROPEL and exceptions (Phan et al. 2008) – Specifying and monitoring exceptional
behavior

▪ Underlying assumptions about target systems
– mlCCL (Baresi & Guinea 2013) – Multi-layered software-as-a-service architectures

– Gan et al. (2007) – Runtime Monitoring of Web Service Conversations in IBM’s WebSphere
Integration Developer

▪ Human Effort required
– ReMinds (Vierhauser et al. 2016) – manual specification of instrumentation and hooks

26
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Running System

ARTCAT Toolchain

C/C++ Source CodeC/C++ Source CodeC/C++ Source Code

Programmer

Compiler Application

Static Analysis

Dynamic
Analysis

Manual
Editing

Monitor Policy Generation

Runtime
Policy

Develop Monitors & Responses

Offline

Instrument

&

Deploy

Instrumentation Deployment

Online, Synchronous & Asynchronous

Monitoring and Responses

Stealthy Monitor
DynamoRIO

(model + reflex responses)

Deployment Daemon

Reasoning Engine

Online, Asynchronous Responses

Web UI

System
Reasoner

Software
Repair

Application

Reasoned

Responses

Events

Messaging
Broker

And
Coordinator

Status and
events

Repairs

Repair
requests

Events

High-level
response

tasks

Operating System

mgen

27
STATEMENT A: APPROVED FOR PUBLIC RELEASE

ARTCAT Deployment

Running System
C/C++ Source CodeC/C++ Source CodeC/C++ Source Code

Programmer

Compiler Application

Static Analysis

Dynamic
Analysis

Manual
Editing

Monitor Policy Generation

Runtime
Policy

Develop Monitors & Responses

Offline

Instrument

&

Deploy

Instrumentation Deployment

Online, Synchronous & Asynchronous

Monitoring and Responses

Stealthy Monitor
DynamoRIO

(model + reflex responses)

Deployment Daemon

Application

Operating System

mgen

1. The mgen monitor generation

tool converts instrumentation and

monitors into DynamoRIO clients

2. ARTCAT deploys clients to

perform binary instrumentation at

runtime

3. Deployment occurs through

deployment daemon and

DynamoRIO runner
– Inspects program state

– Runs monitors

– Reports events

– Carries out reflex responses

1

2

3

28
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Accuracy

Monitors caught 99.5% of errors;
tests caught 35%

▪ How effective is ARTCAT at
finding policy violations?

▪ Experiment: CGC water tank
controller program. Generated
policy and generated variants
with errors run on a test suite,
plus under monitoring

▪ Conclusion: domain-focused
monitors cover many cases
that testing may miss

74

137

1

0

TESTING FOUND TESTING MISSED

MONITORING VS TESTING

Monitor Found Monitor Missed

29
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Policy Generation

▪ Invariant generation produces
realistic fixpoints.

▪ Experiment run on tar zip utility.
– 16k input pool, 1024 per run

– "Diverse" inputs: create compressed
files, unzip compressed files, etc.

– 341 invariants found, 331 in every
run.

▪ Automated filtering automatically
removes low-quality invariants

▪ Interactive UI allows for fast
human review and re-testing to
lower performance impact,
improve accuracy.

▪ Performance on the scale of
minutes/hours, not days/weeks.

30
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Runtime Overhead

▪ Experiment: run applications

under monitoring

▪ Conclusion: viable for long-

running applications (bash,

servers, etc.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

nginx bash tws

Sl
o

w
d

o
w

n
 v

er
su

s
n

at
iv

e

Benchmark

Dynamo Rio Performance

31
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Protecting BIOS Firmware from Malware

▪ Goal: Protect UEFI, which is the BIOS type

on almost all COTS PC systems

▪ UEFI BIOS initializes hardware before operating

system loads

▪ Composed of hundreds of components

– May come from multiple third parties

– Source is not available

– Devices may inject their own drivers (“Option

ROMs”)

▪ Monolithic – each component can access

the entire system

▪ Malware in BIOS can subvert any operating

system, VM, or container, running above it

Data

Applications

Operating
System

BIOS/Firmware

Hardware

C
h

ai
n

 o
f

Tr
u

st

Th
re

at
s

Everything trusts the BIOS.

An infected BIOS can

subvert anything.

32
STATEMENT A: APPROVED FOR PUBLIC RELEASE

UEFI

UEFI Boot

▪ SEC: Security (code signature checking)

▪ PEI: Pre-EFI Initialization (CPU and Memory Initialization)

▪ DXE: Driver Execution Environment (Device initialization)

▪ BDS: Boot Device Select (Select operating system)

▪ TSL: Transient System Load (Load operating system)

SEC PEI DXE BDS TSL OS

33
STATEMENT A: APPROVED FOR PUBLIC RELEASE

UEFI Threats and Vulnerabilities

▪ Threats may come from

– Supply chain – Malicious code inserted into
legitimate drivers

– Insider attacks – Additional drivers or misconfiguration

– Code injection – Exploitation of bugs at UEFI level

▪ Survive OS and disk replacement

▪ UEFI Malware Examples
– ThunderStrike (deceived insider attack)

▪ Attacked Mac laptops

▪ Spread by “evil” cable

▪ Option ROM attack

– LoJax (code injection)

▪ From Fancy Bear/Sednit/Apt28 group (affiliated
with GRU)

▪ Mimics LoJack for laptops

▪ Installs OS backdoor

34
STATEMENT A: APPROVED FOR PUBLIC RELEASE

LoJack, LoJax, and MosaicRegressor

35
STATEMENT A: APPROVED FOR PUBLIC RELEASE

State of the Art

▪ Current solutions are focused on code signing
– Secure Boot – no unsigned code allowed

▪ Signature checks for UEFI, boot loader, OS

– Intel Trusted Execution Technology (TXT)
▪ Can dynamically check local configuration

▪ Provides remote attestation of boot

▪ Current solutions do not
– Prevent supply chain attacks

– Provide forensic information

– Permit responses

36
STATEMENT A: APPROVED FOR PUBLIC RELEASE

UEFI Boot with SySense and Aperture

SEC PEI DXE BDS TSL OS
SySense &
Aperture

LOGS
Policy

Inferrer

Training

Monitoring

Detection &
Response

37
STATEMENT A: APPROVED FOR PUBLIC RELEASE

Apply Principle of Least Privilege to UEFI

▪ Divide UEFI into separate logical
substages

▪ Use Aperture hypervisor from Clear Hat
Consulting to monitor and protect
instrumentation

▪ Monitor interactions between substages
to construct policy

▪ Enforce policy to prevent substages from
interfering with each other

Hardware

Operating System

UEFI BIOS Aperture Hypervisor

SySense Policy Enforcer

Hardware

UEFI BIOS

Operating System

BIOS with substage access controlsMonolithic BIOSWithout Monitoring With Monitoring

