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ABSTRACT

We present inuring, an attack-guided repair method for software
vulnerabilities in n-variant systems. N-variant systems detect at-
tacks that cause divergence in variant behavior, converting severe
vulnerabilities (such as those that enable remote code execution)
into less severe denial-of-service vulnerabilities. Inuring is a general
technique for n-variant systems that uses information gleaned from
an attack to perform a “live” field repair of the underlying vulnera-
bility, thereby obviating the denial-of-service attack. We present a
case study of the use of inuring to protect against a powerful class of
memory-corruption exploits in the Apache web server. Our demon-
stration leverages dappling, a new technique for provably secure
memory layout in n-variant systems. With inuring and dappling
we are able to guarantee strong protection and remediation for a
class of write-what-where vulnerabilities in n-variant systems. Our
case study illustrates the efficacy and efficiency of these techniques.
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1 INTRODUCTION

Modern society increasingly runs on software, and our vulnerability
to software attacks is increasing commensurately. Unfortunately
software security is asymmetric: not only do attackers get to go
second, but defenders have to be right all of the time while attackers
only have to be right once. We introduce an inuring method in which
deployed software automatically hardens itself in response to attack.
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Inuring not only stops attacks, but also permanently protects the
software against subsequent attempts to exploit the same weakness.
We argue that inuring is a general technique that is applicable to
many attack surfaces in n-variant systems.

Memory errors remain a rich source of exploits for attackers. A
decline in other attack options means that they are even gaining in
popularity (cf. increased interest in data only attacks [6]): for exam-
ple, classic control flow attacks such as ROP are largely mitigated
in modern architectures due to advances in control flow protection.

We present a case study using inuring to defend against memory
exploits in an n-variant system. This illustration introduces a novel
n-variant memory layout technique called dappling which provides
complete spatial memory protection for dappled memory. This
work makes the following contributions.

C1. Dappling, a secure and efficient method of laying out memory
across multiple program variants to prevent absolute and
offset attacks (§ 2).

C2. Inuring, a generic method for attack-guided repair of n-
variant systems (§ 3).

C3. An application of inuring to detect and repair memory vio-
lations in n-variant systems (§ 3.1).

C4. An inuring case study and evaluation (§ 4).

1.1 Background and Related Work

1.1.1  N-Variant Systems. An “n-variant system” [3] is a system
in which multiple versions of a program are run in unison. All
input is multiplexed to the variants, and the responses from all
variants are unified and checked for unanimous agreement before
the system responds. The harness for an n-variant system may
be implemented in the kernel or in user space. The variant input
and output may be multiplexed and unified around system calls. N-
variant systems can be a convenient way to leverage the additional
cores provided by modern systems to provide additional security
for safety-critical software. Each variant should differ in the details
relevant to attack surface, such as memory layout. For an attack to
land, it must simultaneously corrupt all variants in an analogous
manner so that they continue to all give the same responses. For
example, an attack would have to corrupt the same function pointer
in each variant to point to corresponding addresses in each variant.
Given diversity among the variants, attempted exploits are likely
to result in divergence.
Examples of n-variant systems include the following.
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Figure 1: “Checkerboard” layout with no absolute memory
overlap between variants.

MvArmor (and MemSentry). MvArmor! is a multi-variant exe-
cution system using hardware-assisted process virtualization [7].
MemSentry? is an MvArmor follow-on which uses hardware to
isolate sensitive regions.

Varan. Varan [5] focuses on performant multi-version execution
without requiring kernel modifications.

FreeDA. FreeDA [11] runs multiple incompatible dynamic analy-
sis tools via multi-variant execution.

Bunshin. Bunshin [16] distributes checks across variants to max-
imize compatibility and efficiency.

Buppy. Buppy [9] provides probabilistic protection against mem-
ory disclosure.

1.1.2 Memory Errors. We identify three classes of spatial memory
errors.

Buffer overflow. The most common memory error is a buffer
overflow. In a buffer overflow, the code responsible for accessing a
region of memory (’buffer’) doesn’t perform proper bounds check-
ing and may read or write past the end of the region. When exploited
this may give an attacker read or write access to whatever program
data happens to immediately follow the buffer in program memory.

Offset attack. An offset attack is a generalization of a buffer
overflow that targets an indexed memory access such as the follow-
ing.

. *(base + index * scale) ...

In a buffer overflow, the attacker leverages the fact that the
program may increment (or decrement) the index to values that
are outside of the buffer pointed to by base. In an offset attack, the
attacker has the ability to set index and possibly scale to arbitrary
values of their chosing. This provides the attacker with the ability
to access memory arbitrary distances from the base of the buffer,
without having to traverse all intervening memory. This bypasses
defenses against buffer overflows that place special “guard” values
immediately following every buffer in memory and raising an error
when a guard value is accessed [10, 12].

Write-What-Where. A write-what-where attack targets an in-
struction that dereferences an improperly handled address to update
a memory location.

*(base + index * scale) = value

The attacker takes control of both the address and the value that
is written. A write-what-where attack is a flexible, robust primitive
for building attacks.

A write-what-where attack may or may not be an offset attack,
depending on what components of the address are under attacker
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Figure 2: Offset attacks against a dappled layout. Va # any
offset § s.t. V variant o + § is a valid address. A two-variant
and two-object layout is shown.

control. In an n-variant system offset attacks are especially threat-
ening, because many diversification techniques do not change the
relative offsets between program elements. Each variant may use a
different base value, but the attack is indifferent, because the same
index values will access the same code or data in each variant.

Consider the simple “checkerboard” memory layout in Figure 1,
where “X”s represent program code and data and “.”s represent un-
mapped memory. Any write-what-where attack against an absolute
address value will hit unmapped memory in one variant as there
are no addresses mapped in every variant. However, assuming the
program code and data are laid out identically across both variants
a simple buffer overflow or offset attack would still work because
each variant will perform the memory calculation with its own
suitable value for base.

2 DAPPLING

Diverse memory layouts across n-variant systems may be used
to protect against spatial memory vulnerabilities. However, as de-
scribed in the previous section, existing diversification techniques
may be insufficient to protect against offset attacks.

Dappling provides provably complete protection against spatial
memory attacks in the dappled memory. An SMT solver is used
to synthesize layouts of program data across all variants in a man-
ner which is formally guaranteed to preclude any spatial memory
errors (including buffer-overflow, write-what-where, and offset
attacks) and to be maximally space-efficient. The use of existing
kernel-level page faults avoids the need for explicit application-level
checks around memory accesses. Dappling at sub-page granularity
is possible if application-level checks are used as in AddressSani-
tizer or Light-Weight Bounds Checking (LWBC) [10, 12]. Temporal
memory errors such as use-after-free are not addressed by dappling.

Specifically, dappled layouts ensure that V program object o
3 any nonzero offset § s.t. V variant in the n-variant system the
address a + § is valid. Although such layouts are easily written by
hand and checked for small numbers of variants and objects (e.g.,
the 2% 2 layout in Figure 2) they quickly become difficult to identify
and check. The key technical insights of this work are the use of
SMT solvers to efficiently synthesize maximally efficient layouts
for given numbers of variants and objects (§ 2.1), and the recursive
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Variant 1: ©1234567.8.9.ABCDEF
Variant 2: 5FDA.B38E.26.79104C
Variant 3: 47690.1DFCA2.3.E8B5
Variant 4: CE5804.FA3B.D.62971

(a) Dense layout of 16 objects over 4 variants in 19 memory loca-
tions.
Every object and memory location has the same size.

Variant 1: .......... 01234567.8.9.ABCDEF
Variant 2: ....... 5FDA.B38E.26.79104C. ..
Variant 3: 47690.1DFCA2.3.E8B5..........
Variant 4: ....CE5804.FA3B.D.62971......

(b) Layout from 3a aligned on ’3’, visualizing the offsets from object
3. Note every offset, column, is unmapped or guarded (shown as “.”)
in one variant. Furthermore this property holds when the layouts
are re-aligned on any object from 0-F.

Figure 3: An example dense dappled layout.

re-application of layouts at increasing orders of magnitude of scale
to handle multiplicatively more objects (§ 2.3).

2.1 SMT-Encoding

For any given number of variants, size of memory, and number
of objects of equal size, it is possible to efficiently encode the con-
straints of Figure 2 using the theory of fixed width bit vectors.

Appendix A shows such an encoding expressed using the Com-
mon Lisp CL-SMT-LIB package? for encoding constraints in SMT-
LIB2* [1]. This encoding works by representing layouts as bit-
vectors. Then for every object in the layout which is the base of a
potential offset attack it is asserted that when the bit-vectors are
aligned on that object and zero-padded their bitwise-and is 0. This
ensures that every position is 0, i.e. unmapped or guarded, in at
least one variant.

The SMT solver will either return unsat (meaning there is no
arrangement with this property) or it will return the satisfying
model: a dappled layout of objects across variants. An example
SMT-generated layout is shown in Figure 3a. Figure 3b shows this
same layout aligned on the object labeled “3” There is at least
one unmapped or guarded location in “column:” that is, at every
possible nonzero offset from the aligned object. This property holds
for every alignment on every object in the layout.

2.2 Dense Dappled Layouts

To find all maximally dense layouts, we begin with a set number of
variants, a set range (number of memory slots), and two objects, and
run the SMT solver with increasing number of objects until unsat
is returned for some number of objects N. This yields the densest
packing of N — 1 objects in that range. Repeatedly running until
unsat and ratcheting up the range yields the densest layout for
each range across the given number of variants. The sizes of these
densest possible layouts for two through eight variants are shown

3https://github.com/grammatech/cl-smt-lib
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Figure 4: The sizes of the densest possible dappled layouts
by number of variants and number of objects.

in Figure 4. The SMT queries required to identify these layouts
quickly become expensive (taking many days of time to compute
the largest layouts shown). We have been unable to calculate the
growth of minimal layout size as a function of the number of ob-
jects and variants and we are unsure whether or not a closed-form
relationship exists.

2.3 Recursive Dappling

As shown in Figure 4, the largest layouts house orders of magnitude
fewer objects than are used by a typical program. Complexity of
layout calculation is exponential in the number of objects, so even
years of solver time would add only a couple of points to this graph.

We can scale these layouts to real programs by recursively ap-
plying the layouts as shown in Figure 5. To perform this “recursive
dappling” we repeatedly apply a layout as many times as necessary
until all program objects are housed: a total of % applica-
tions, where |objects| is the number of program objects and N is the
number of objects held by the layout. We then treat each application
as an atomic object and recursively dapple them. Dappling assumes
layouts are surrounded by unmapped memory of size equal to the
range, and recursive dappling may pack applications adjacently, so
we append unmapped memory of range size to one side of each ap-
plication before recursive dappling. We then recursively dapple the
resulting applications into % total higher-level applications.
This process continues until only a single application is required to
dapple all sub-applications. In this way even very large programs
may be dappled using modestly sized layouts.

2.4 Limitations and Extensions

Limitations. The dappled layouts shown thus far can be directly
applied to all statically allocated program code and data. Dappled
layouts do not protect against intra-structure memory errors, only
errors between independent objects. Dappled layouts cannot be
used directly to dapple dynamic heap and stack data.

Extensions. For both stack and heap one could first select a max-
imum amount of space which may be consumed dynamically and
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Figure 5: Recursive application of a 2-variant 2-object dap-
pling layout at increasing scales.

then generate a dappled layout to accommodate this much space.
Then when memory is allocated and freed (either by the heap al-
locator or by stack growth and shrinkage) the memory would be
consumed from and returned to each variant’s dappled layout in the
order of the objects in that layout. This would be a refinement of the
“dense/sparse” heap memory layout strategy presented in MvAr-
mor [7] which could be viewed as a degenerate space-inefficient
form of heap dappling.

Such a method of dynamic dappling is not implemented in our
prototype and is not included in our case study. Implementation
would require modification to the heap allocator and to the mecha-
nism by which activation records are added to and removed from
the stack. It could cause excessive runtime overhead due to the
extra runtime cost of referencing and maintaining the layout on
every allocation. It could also cause excessive memory pressure if
most heap allocated objects require independent memory pages.

3 INURING

Inuring is a technique to automatically immunize an n-variant
system in response to an attempted attack. Inuring requires three
components:

(1) A structured diversification that guarantees that an attempted
exploit will (a) cause a divergence and (b) identify the loca-
tion of the vulnerability.

(2) An ability to install consensus voting in the variants such
that future attempted exploits can be detected prior to diver-
gence.

(3) A suitable replacement action to take in place of executing
the original, vulnerable logic.

N-variant systems convert severe vulnerabilities, such a those
that enable remote-code execution, into less severe denial-of-service
vulnerabilities. Inuring overcomes this limitation: after a vulner-
ability is inured, attackers cannot use the inured vulnerability to
force divergence.

We demonstrate inuring for an important class of memory-safety
vulnerabilities that is frequently expensive and difficult to defend.
We believe the technique is applicable to other vulnerability classes
where the three obligations listed above can be met.

3.1 Inuring Against Memory Exploits

We guarantee divergence on attempted offset attacks by dappling
objects and employing a memory-checking technique similar to
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LWBC or AddressSanitizer [10, 12] (which do not protect against
offset attacks on their own). An attack leveraging an offset from
one object to another will be detected in at least one variant, either
by causing a dereference of unmapped memory or by attempting
a memory access that is forbidden by the memory-checking tech-
nique. In either case the instruction of the bad memory access is
identified satisfying inuring requirement (1).

Every potentially unsafe memory access is checked in every
variant. However, dappling only guarantees that a check will catch
an invalid access in at least one variant. The other variants may clear
the access as safe, because it does not access a guarded memory zone
in those variants. When an attack is detected (in some variant), we
force divergence and a system reset before any corrupted variants
can commit a persistent action, such as writing to disk.

To automatically repair the vulnerability, we modify the check
on the vulnerable instruction in each variant to require consensus
from all variants that the access is safe before proceeding. We call
this technique consensus voting. Consensus voting requires support
from the n-variant system. Prior to inuring, the code around an
unsafe memory access might look like the following:

if (accesses_guard_zone(p))
diverge();
Lxp oL // Dereference of potentially unsafe address p.

After inuring, the code behaves as follows:

if (nsys_consensus(accesses_guard_zone(p)))
. *p ... // Original instruction.
else
// Replacement action.

In this code, nsys_consensus is a call to the n-variant system
that returns true (indicating the access is safe in all variants) if and
only if the corresponding calls pass in all variants.

Consensus voting converts the guarantee that an attempted
attack will be detected in some variant into a guarantee that all
variants will avoid the attack. It is too expensive to implement
proactively because it requires synchronization between variants.
Once a vulnerability has been verified by an attempted attack, the
additional cost in justified.

Inuring requires an alternative to exercising the original, vulner-
able code. Many replacement actions are available, including:

A1. Skip write operations and replace read operations with the
constant value zero. This approach of using “null actions”
was introduced by Recovery Shepherding [8].

A2. Configure an application-specific replacement action. For
example, server applications are often capable of recover-
ing from dropped or faulty connections. When an attack is
detected in handling a connection, the replacement action
could drop the connection. This approach is a variant of
error virtualization [13].

A3. Alert an existing protection and response system. There are
many commercial systems that perform Software Informa-
tion and Event Management (SIEM). These systems may be
configured with knowledge of the mission or goals of the
system and specific responses to attack.

A4. Intentionally delay the performance of the system [14, 15].
This strategy was first used in intrusion detection systems.
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Table 1: Pseudo-code versions of unsafe memory accesses inured with the “null” replacement strategy A1 described in § 3.

Original Mem-safety check Inured check

Unsafe Write * = X; tmp = p;

if (guard_bad(tmp)) imbad = guard_bad(tmp);

tmp = p;

abort(); anybad = consensus(imbad);
*tmp = X; if (lanybad)
*tmp = X;
Unsafe Read y = *p; tmp = p; tmp = p;
if (guard_bad(tmp)) imbad = guard_bad(tmp);
abort(); anybad = consensus(imbad);
y = xtmp; y = anybad ? @ : *tmp;

4 CASE STUDY

We implemented an inuring prototype using GrammaTech’s CodeSurfer
binary rewriting system to generate N variants of an example binary
for execution under a Multi-Variant Execution Environment (MVEE)
named RAVEN [2]. Specifically, we inure the Apache web server
and demonstrate that the hardened server (i) detects and reports
memory-safety violations the first time they occur, (ii) patches ex-
ploited locations with alternate inured code, and (iii) on subsequent
violations at the same site, continues execution without violating
memory safety and without divergence or restart.

Starting with a version of Apache 2.4.17 which had been seeded
with multiple vulnerabilities we did the following.

®

(1) Create two variants, each instrumented to perform memory-
safety checks akin to Address Sanitizer [10, 12]. Memory-
safety checks are applied to every dereference that cannot
be statically determine to be safe.

(2) Pre-generate “inured” versions of every basic block (i.e. se-
quence of instructions with straight-line control flow) that
contains an unsafe memory dereference. These inured basic
blocks are automatically adapted from the originals by ap-
plying the “null action” strategy A1 described in § 3. Inured
blocks are added to the binary but are not targets of control
flow.

(3) Dapple the global objects across the variants. Dappling works
for objects of uniform size, so this requires first grouping the
objects by size, then padding all objects in each group up to
the size of the largest object in the group. Dapple each group
using a memory slot sizes equal to the largest object in the
group. Then recursively dapple the resulting applications.

(4) Start the two variants under the MVEE and run non-malicious
but rigorous JMeter [4] tests to confirm runtime efficiency
and that no divergence is reported.

(5) Run a proof-of-vulnerability (POV) input designed to exploit
one of the seeded vulnerabilities. This will trigger a memory
fault in at least one variant, causing the MVEE to diverge.
On divergence inuring takes place automatically:

(a) Identify the basic block B in which the memory safety
violation occurred.

(b) Path both variants to replace the beginning of block B with
a jump instruction, i.e. a trampoline, to the corresponding
inured basic block B;;red-

(c) Restart Apache, now running inured forms of both of the
original variants.

(6) Repeatedly run the POV input against the inured server.
These subsequent attacks cause the inured blocks to run
consensus vote as shown in Table 1. The consensus vote
fails on malicious input causing the replacement action to
be run. Instead of divergence or restart, the only impact on
behavior is the minimal impact of the replacement action
and the modest slow down of the consensus vote.

5 CONCLUSION

We present dappling and inuring. Dappling is a maximally space-
efficient technique of memory layout in n-variant systems that is
provably secure against spatial memory errors. Inuring is a method
of attack-guided repair in n-variant systems. Inuring leverages at-
tacker input to identify vulnerabilities through divergence of an
n-variant system. This divergence then triggers the application of
automated general repair techniques leveraging the use of consen-
sus voting between variants. While slower than normal execution,
consensus voting avoids the extreme impacts of divergence which
could otherwise result in a denial-of-service. Instead of diverging,
the inured system may respond to attack by skipping vulnerable
behavior, error virtualization, reporting to a SIEM system, or taking
application-specific actions. Inuring is a general technique to miti-
gate the denial-of-service attacks that force repeated divergence of
an n-variant systems.
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A CL-SMT-LIB2 DAPPLING CONSTRAINTS

(defun dapple (range vars objs)
"Return a query for a satisfiable layout in RANGE across VARS holding OBJS.
The order of OBJS is allowed to permute between variants. A
satisfiable layout will ensure that no offset exists which when added
to the location of an object in each variant will land in another
object in each variant.
* RANGE is the range in which to layout the objects.
* VARS is the number of variant layouts to consider.
* OBJS is the number of objects which should be held in each variant layout."
(flet ((bit-n (n) (read-from-string (format nil "|bit-~d[" n)))
(obj-n (n) (read-from-string (format nil "[obj-~d[" n)))
(bvn (n) (read-from-string (format nil "[bv~d[" n)))
(vn (n) (read-from-string (format nil "[v~d|" n)))
(vpn (n o) (read-from-string (format nil "|vp~d-~d|" n 0))))
#1*((set-option :produce-models true)
(set-logic QF_BV)

(define-fun hamming-weight ((bv (_ BitVec ,RANGE))) (_ BitVec ,RANGE)
, (REDUCE (LAMBDA (ACC N)
“(bvadd ,ACC ((_ zero_extend , (1- RANGE))
((_ extract ,N ,N) bv))))
(LOOP :FOR I :FROM 1 :BELOW RANGE :COLLECT I)
:INITIAL-VALUE
“((_ zero_extend ,(1- RANGE)) ((_ extract @ @) bv))))

(define-fun member ((index (_ BitVec ,RANGE)) (bv (_ BitVec ,RANGE)))
Bool
(not (= (_ bv@ ,RANGE) (bvand bv index))))

(define-fun left-hamming-weight ; Counts INDEX from left to right.
((index (_ BitVec ,RANGE)) (bv (_ BitVec ,RANGE))) (_ BitVec ,RANGE)
(hamming-weight
(bvand bv (bvnot (bvsub (bvshl index (_ bvl ,RANGE))
(_ bvl ,RANGE))))))

(define-fun right-hamming-weight
((index (_ BitVec ,RANGE)) (bv (_ BitVec ,RANGE))) (_ BitVec ,RANGE)
(hamming-weight (bvand bv (bvsub index (_ bvl ,RANGE)))))

(define-fun bit-1 ((bv (_ BitVec ,RANGE))) (_ BitVec ,RANGE)
(bvand bv (bvneg bv)))

,@(LOOP :FOR N :FROM 1 :TO RANGE :COLLECT
*(define-fun , (BIT-N (1+ N)) ((bv (_ BitVec ,RANGE)))
(_ BitVec ,RANGE)
(,(BIT-N N) (bvand bv (bvsub bv (_ bvl ,RANGE))))))

(define-fun index-bit ((index (_ BitVec ,RANGE)) (bv (_ BitVec ,RANGE)))
(_ BitVec ,RANGE)
, (REDUCE (LAMBDA (ACC N)
“(ite (= index (_ ,(BVN (- RANGE N 2)) ,RANGE))
(, (BIT-N (- RANGE (1+ N))) bv)
,ACC))
(LOOP :FOR I :BELOW (1- RANGE) :COLLECT I)
:INITIAL-VALUE *(, (BIT-N RANGE) bv)))
;; To allow for permutation each variant also has an
;; associated "permutation matrix" which may be used to map
;; each index to another valid index. The matrix for N
;; objects will be N N-length bit vectors each of which has a
;; single 1, the 1 in the ith vector at the jth place means
;; that the permutation matrix maps i to j.
(define-fun permute ((index (_ BitVec ,RANGE))
,@(ITER (FOR OBJ BELOW OBJS)
(COLLECT
*(,(0BJ-N OBJ) (_ BitVec ,RANGE)))))
(_ BitVec ,RANGE)
(let ((my-index-bit (bvshl (_ bvl ,RANGE) index)))
, (REDUCE (LAMBDA (ACC N)
“(ite (= my-index-bit , (0OBJ-N N))
(_ ,(BVN N) ,RANGE)
,ACC))
(REVERSE (ITER (FOR N BELOW (1- OBJS)) (COLLECT N)))
:INITIAL-VALUE “(_ ,(BVN (1- OBJS)) ,RANGE))))

(define-fun left-zeros ((index (_ BitVec ,RANGE)))
(_ BitVec ,(* 2 RANGE))
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, (LABELS
((LEFT-ZEROS (SIZE OFFSET)
(LET ((MID (+ OFFSET (FLOOR (/ SIZE 2)))))
(IF (<= SIZE 1)
“(_ ,(BVN (- RANGE (+ OFFSET SIZE))) ,(* 2 RANGE))
“(ite (bvugt index
(_ ,(BYN (FLOOR (EXPT 2 (1- MID))))
RANGE))
,@(LIST
(LEFT-ZEROS (CEILING (/ SIZE 2))
(+ OFFSET (FLOOR (/ SIZE 2))))
(LEFT-ZEROS (FLOOR (/ SIZE 2)) OFFSET)))))))
(LEFT-ZEROS RANGE 0)))

(define-fun centered ((index (_ BitVec ,RANGE)) (bv (_ BitVec ,RANGE)))
(_ BitVec ,(* 2 RANGE))
(bvshl ((_ zero_extend ,RANGE) bv) (left-zeros index)))

J@(ITER (FOR VAR BELOW VARS)
;3 Variant I.
(COLLECT *(declare-const ,(VN VAR) (_ BitVec ,RANGE)))
(COLLECT “(assert (= (_ ,(BVN OBJS) ,RANGE)
(hamming-weight , (VN VAR)))))
;; Permutation Matrix for Variant I.
(UNLESS (= VAR @)
(APPENDING
(ITER (FOR OBJ BELOW OBJS)
(COLLECT
“(declare-const , (VPN VAR OBJ) (_ BitVec ,RANGE)))
(COLLECT
“(assert
(or ,@(ITER (FOR N BELOW OBJS)
(COLLECT
‘(= (_ , (BN (EXPT 2 N)) ,RANGE)
, (VPN VAR 0BJ)))))))))
(COLLECT
(assert
(= (_ ,(BVN (1- (EXPT 2 OBJS))) ,RANGE)
, (REDUCE (LAMBDA (ACC N)
*(bvor , (VPN VAR N) ,ACC))
(REVERSE
(ITER (FOR N BELOW (1- OBJS)) (COLLECT N)))
:INITIAL-VALUE
(VPN VAR (1- OBJS))))))))
;3 For BV of length N.
;; For every object O
H For every layout L
H create the 2*N BV with L shifted left by (- N (position 0))
B assert bvand across all layouts == @ aside from the center bit
(assert
(and
,@(LABELS ((ALIGNED (OBJ VAR)
(LET ((CENTERED
(IF (ZEROP VAR)
“(centered (index-bit (_ ,(BVN OBJ) ,RANGE)
, (VN VAR))
, (VN VAR))
(centered
(index-bit
(permute (_ ,(BVN OBJ) ,RANGE)
J@(ITER (FOR OBJ BELOW OBJS)
(COLLECT (VPN VAR OBI))))
, (VN VAR))
» (VN VAR)))))
(IF (ZEROP VAR)
CENTERED
*(bvand ,CENTERED
, (ALIGNED OBJ (1- VAR)))))))
(LOOP :FOR OBJ :BELOW OBJS :COLLECT
‘(= (_ bv@ ,(* 2 RANGE))
(bvxor , (ALIGNED OBJ (1- VARS))
(_ ,(BYN (EXPT 2 (1- RANGE)))
, (* 2 RANGE))))))))

(check-sat)
(get-model))))
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