
Software Transformation:
Applications, Tools, Challenges, and Program Representation

Eric Schulte
eschulte@grammatech.com

Michael McDougall
mcdougall@grammatech.com

Dave Melski
melski@grammatech.com

September 19, 2016

Abstract

We review the many applications, tools, and challenges for the automated analysis and
transformation of software. This review covers both existing tools and techniques as well as
emerging applications. We describe the general space of program representation, analysis, and
transformation identifying particularly important special cases. We conclude with motivation for
a program representation which may be used generally across different program transformation
tools. We discuss desirable properties of such a representation to support general program
transformation.

1 Introduction

Program transformation is so general a term as to include the entire field of software engineering.
We can refine transformation into more restrictive categories, see Figure 1. Starting with program
translation, rewriting a program from one representation to another, e.g. translating an ARM
executable to x64, without changing its operational semantics or functional properties. Beyond
program translations, program transmutation includes changes to a program’s operational semantics
which preserve functional properties. Finally fully general program transformation includes changes
to a program’s functional properties as well as non-functional properties and representation.

T
ra

nslation

Tr
ansm

utation

Tra
nsformation

Figure 1: Restricted subsets of program
transformations.

In section 2 we will begin with an analysis of
the space of program representations and program
translations between representations. We will iden-
tify common challenges including the generally unde-
cidable problem of translating back up the space of
program representations. In section 3 we will iden-
tify many potential use cases for program transfor-
mation, discussing specific interesting examples. In
section 4 we will then review existing tools support-
ing program analysis and transformation, including
those based on LLVM [14], CMU’s Binary Analysis
Platform (BAP) and GrammaTech’s CodeSurfer®.
Finally, in section 5 we suggest a particular program
representation as the foundation upon which to build
an ecosystem of tools for program transformation.

1

eschulte@grammatech.com
mcdougall@grammatech.com
melski@grammatech.com


2 Program Representation and Translation

Specification

KestrelImplicit Fiat

Magic CardsMan Pages . . .

Source

JavaCOCaml Python . . .

IR

LLVM-SSAGCC-RTL

BILGT-IR . . .

Assembler

Java Bytecode Python BytecodeOCaml Bytecode

x86x64MIPS ARM PPC . . .

Executable

CPUEmulation Interpreter

Virtual Machine . . .

Implementation

Compilation

Assembly Disassembly

Decompilation

Lifting

Architecture Recovery

Figure 2: Space of program representations.

Program representations may loosely be grouped into the hierarchy shown in Figure 2. Moving
down the hierarchy representations lose generality and gain additional operational specificity. Tra-
ditional software engineering tools and techniques such as compilers and assemblers perform such
descending translations. General program translation also requires ascending translations. Ascend-
ing translations pose many challenges, some of which are generally undecidable. We discuss specific
challenges below.

Symbol/literal disambiguation. One of the most significant problems encountered when dis-
assembling program executables is determining whether numeric literals in the executable are
constants or are addresses. A correct determination is critical as constants must be held
constant by program translations while addresses must be changes to a symbolic form which
permits translations which alter program layout. While this determination is generally unde-
cidable, in practice it is often possible to correctly classify every literal in even large programs.
When high confidence classification is impossible there are a number of possible mitigations
of increasing severity.

1. Pinning sections, e.g. .rodata, of a program executable in memory is one way to ensure
that untranslated program addresses, e.g. references to data, remain functional.

2



2. Pinning targets of control flow in memory provides similar benefits for untranslated ad-
dresses.

3. Dynamically translating all control flow targets from addresses in the original executable
to corresponding addresses in the new executable provides the same benefit for code
references without restricting layout in memory.

4. Retaining memory layout as much as possible and limiting changed code to either tram-
polines or to small size-constant differences alleviates most of this analysis burden.

Non-0-based arrays. A particularly difficult instance of literal disambiguation is Non-0-based
arrays. In these cases the address used as the base of the array is never dereferenced directly
but only when combined with, possibly large, offsets. This is troublesome because the address
may lay outside of any valid memory region so heuristics which attempt to classify literals
based on their values, or which attempt to collect referents based on addresses will fail.

Object delimitation in memory. The delineation of objects in global memory, in the heap,
and on the stack is a difficult problem for binary analysis. However, modification to pro-
gram data and code which builds and uses the stack requires this information to identify and
potentially move objects.

Figure 2 hides many details. For example the lifting of executables to IR must handle multiple
dimensions along which executables may differ. Knowledge of and customization to each of the
following is necessary for reliable executable-to-executable rewriting.

ISA. Including x86, x64, MIPS ARM, ARM-thumb, . . . , and specific versions of each.
Linking. Static or dynamic.
Operating System (environment). Windows, Linux, Mac, RTOS, . . . all provide different

runtimes (available system calls, error handling, etc. . . ) in which binaries are executed.
Executable Format. ELF, PE, a.out, . . .
Original Source Language. Determines non-code binary information including debug, relo-

cation, dynamic linking, and error handling structures.
Compiler and compiler flags. Compilers use different idioms which when recognized provide

useful information to binary lifters.
While program translation may be beneficial in its own right, for e.g. porting programs between

execution environments by lifting to the be re-compiled and re-assembled, most often translation
between program representation is done to perform some other transformation. In the next section
we discuss uses of program transformation.

3 Applications of transformation

Common program transformations include optimization, hardening, obfuscation, diversification, re-
duction, and conglomeration. Each of these may be performed along any of the translations shown
in Figure 2, as well as by translations within representations e.g., source-to-source transformations.
The most common of these, the first two, are readily performed by compilers. With link time op-
timization and dead code elimination, reduction and conglomeration are also commonly performed
by compilers. We discuss some of these transformations identifying particularly relevant representa-
tion translations below. GrammaTech has current or past funded research applying binary program
transformation to support each of these following application areas.

3



3.1 Optimization

Commonly performed by compilers, optimization may also be performed along other translation
paths. For example super-optimization [16], stochastic super-optimization [17], and post-compiler
optimization [18] apply assembler-to-assembler transformations for optimization. Translating opti-
mization opens up many additional opportunities for optimization, some of which we detail below.

Layer collapsing. One area where compiler optimizations are particularly limited is in the opti-
mization of code which crosses separate compilation units, such as library boundaries. This
leads to executables with potentially multiple layers of library invocations which perform re-
dundant or unnecessary indirection, input transformation, and environment customization.
Executable lifting has the opportunity to unify the many components of an executable into a
single IR which may then be optimized to remove and combine redundant indirection.

Partial evaluation. Transformation of executables increases the ability of end users to transform
programs. End users are in a special position in that they are free to customize the application
to their particular use case. This presents opportunities not only for reduction (described
below) but also for partial evaluation. One motivating example would be the evaluation of
an application, e.g. a web server, which reads a configuration file to set program options,
and to enable and disable functionality. Partial evaluation of the web server against the
configuration file allows the transformation to perform traditional compiler transforms, e.g.
constant propagation and dead code elimination, with the configuration data present. This
also allows the memoization of startup operations.

Conglomeration. In some cases it may be useful to conglomerate multiple programs. This allows
common functionality to be refactored saving space and potentially reducing the overhead of
loading multiple different programs into memory. One example of this type of optimization
could be the conglomeration of an executable with its shared libraries removing the need to
dynamically load separate executables on startup.

Optimizations may generally be usefully applied alongside other transformations. For example
transformations for hardening applied over the LLVM tool chain often tout the benefits of subsequent
application of the existing LLVM optimization passes to transformed IR.

3.2 Hardening

Program hardening generally refers to the removal of behavior which violates a program’s speci-
fication. This may be divided into two types of hardening (1) behavior which violates universal
specifications, e.g. don’t overrun buffers, and (2) behavior which violates a programs specific spec-
ification such as bugs.

Blanket defenses. Blanket defenses address (1) above and may be applied to rewrite whole
programs to ensure uniform compliance to universal specifications. These include techniques
of memory protection and control flow isolation.

Point repairs. Point repairs address (2) above and may be applied to specific locations in a
binary at which bugs or vulnerabilities have been found. General fuzzing techniques have
proven a popular technique of identifying point vulnerabilities in binaries.

3.3 Reduction.

Executables often include unused functionality. In addition to increasing the size of executables,
with additional code and data, and slowing the runtime of executables, with additional control flow,

4



unused functionality increases the attack surface. A common example would be PDF readers which
include frequently exploited JavaScript engines. Another frequent contributor to application bloat
is shared libraries which may frequently be included into a program which intends to use only a
small fraction of their total functionality.

End users may wish to remove unused functionality, but typically only have access to executables.
Thus reduction transformations which are applied along executables to executables translations are
particularly motivating.

4 Techniques and tools

Program synthesis from specification. Although a number of tools have been developed for
the synthesis of programs from specifications most are applicable only to narrow domains. A
small selection of examples are discussed below.

Fiat The Fiat library for the Coq proof assistant uses stepwise refinement to compile
specifications into executable implementations [6].

Automated Program Transforms (APT). The Kestrel Institute is building APT [11],
a tool which seeks to automate the synthesis of program implementations from high level
specifications leveraging the ACL2 theorem prover [12].

Macho. Man pages provide implicit specifications of the programs they document. Using
natural language techniques along with synthesis leveraging a large code database the
Macho tool has been able to synthesize text processing tools from man pages [5].

Latent predictor networks. In recent work a team at Google has trained neural net-
works to synthesize python classes defining cards for the Magic the Gathering card game
using the cards themselves as the specification. This approach treats synthesis as a trans-
lation problem and innovates by conditioning traditional sequence to sequence translation
techniques on specific information allowing the technique to leverage both unstructured
natural language and structured information from the cards [15].

Binary Analysis Platform (BAP) The BAP binary analysis platform provides an open infras-
tructure for the analysis and verification of program executables [2]. BAP works by first lifting
the executable, using tooling based on either IDA Pro [8] or LLVM [14], to an intermediate
binary intermediate layer or BIL representation. Analysis plugins may then be written to
process the BIL representation.

CodeSurfer GrammaTech’s CodeSurfer platform provides support for analyzing and rewriting
program executables [1]. CodeSurfer similarly works by first lifting executables to an internal
IR. This IR provides both assembler-agnostic information about the functional behavior of
lifted code, as well as assembler specific information about the code’s original representation.
Programs are transformed at the IR level, and the subsequent modified IR may then be pretty
printed to assembler and linked to form a transformed executable.

Diablo Diablo is a link-time binary rewriter for whole-program optimization [20]. Diablo requires
that programs be compiled with an altered version of GCC instrumented to output additional
information to aid in program lifting. Diablo targets whole-program optimizations to optimize
programs speed and compaction.

LLVM lifting tools SecondWrite [19], Fracture [13], and McSema [7] are binary rewriting frame-
works which work by first lifting program executables to the LLVM IR. Programs may then

5



be transformed and recompiled using traditional LLVM compiler passes. Additionally the
RevNIC tool uses dynamic analysis to lift binary code to LLVM IR [3], and the RevGen
tool performs the same lift statically [4].

Zipper The University of Virginia’s Zipper is another framework for binary rewriting [10]. Zipper
first performs program analysis populating a database of program information. This database
is used to rewrite the program, however, unlike most other frameworks discussed herein Zipper
pins control flow targets rather than performing a full re-assembly round trip.

5 Rewriting Program Representation

After reviewing a number of prominent uses and tools for program transformation, the intermediate
program representation emerges as a critical element. Functional and non-functional program trans-
formations are typically written as IR-to-IR passes. Similarly, tools for executable-to-executable
rewriting universally work in two passes, first lifting the original binary to an IR and second gener-
ating transformed output leveraging information in the IR.

The LLVM project demonstrates by example the power that a well designed IR can have to
unify and accelerate a research community [14]. The benefits in the ability of separate projects
and researchers to re-use each other’s analysis, transformations, and supporting tooling provides
a very large productivity boost. In fact, the utility of the LLVM compiler framework has led to
the development of multiple general program transformation tools targeting the LLVM infrastruc-
ture, even though LLVM was only designed to support compilation (a specific instance of program
transformation).

The program transformation community should seek to identify the characteristics of a interme-
diate program representation desirable to support general program transformation (both ascending
and descending translations). The LLVM IR may be a good choice, however the static single assign-
ment nature of LLVM’s IR may not be well suited to as a target IR for lifting executable programs.
We posit the following desirable attributes as a plausible beginning to this list.

Low level memory model. The memory model used by the IR should be compatible with
common machine code memory models, including a global address space, stack, and heap.

Explicit environment representation. In addition to code, program executables encode in-
formation about their execution environment including memory layouts and permissions, error
handling, and dynamically loaded libraries. This should be represented in program IR.

Control flow graph. Representation as a traversable control flow graph.
Types. The IR should support type decorations similar to those applied to program ASTs parsed

from source code. This will enable automated reasoning and the proving over program IR.
Concrete decorations. The IR should support concrete decorations to preserve information

lost in lifting. For example, decorations indicating the specific instructions used when lifting
machine code to a more general functional IR.

Functional semantics. The IR should encode functional semantics in such a form as to enable
traditional compiler analysis as well as projection into abstract domains for abstract analysis.

Operational semantics. The IR should be executable, this supports dynamic checking of trans-
lations, as well as techniques of dynamic analysis such as micro-execution [9].

6



References
[1] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum. Codesurfer/x86 – a platform

for analyzing x86 executables. In International Conference on Compiler Construction (CC), volume
3443 of LNCS, pages 250–254. Springer, 2005/04/04/April 4 2005. Edinburgh, UK.

[2] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. Bap: A binary analysis
platform. In Computer Aided Verification, pages 463–469, 2011.

[3] Vitaly Chipounov and George Candea. Reverse engineering of binary device drivers with revnic. In
Proceedings of the 5th European conference on Computer systems, pages 167–180. ACM, 2010.

[4] Vitaly Chipounov and George Candea. Enabling sophisticated analyses of× 86 binaries with revgen.
In 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops
(DSN-W), pages 211–216. IEEE, 2011.

[5] Anthony Cozzie, Murph Finnicum, and Samuel T King. Macho: Programming with man pages. In
Proceedings of the 2011 Workshop on Hot Topics in Operating Systems (HotOS 2011), 2011.

[6] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. Fiat: Deductive synthesis
of abstract data types in a proof assistant. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, pages 689–700, 2015.

[7] Artem Dinaburg and Andrew Ruef. Mcsema: Static translation of x86 instructions to llvm. In ReCon
2014 Conference, Montreal, Canada, 2014.

[8] Chris Eagle. The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassembler. No
Starch Press, 2008/// 2008.

[9] Patrice Godefroid. Micro execution. In Proceedings of the 36th International Conference on Software
Engineering, pages 539–549. ACM, 2014.

[10] J. D. Hiser, Anh Nguyen-Tuong, Michele Co, BenjaminD Rodes, Matthew Hall, C. Coleman, John C.
Knight, and J. W. Davidson. A framework for creating binary rewriting tools. In Proceedings of the
2014 Tenth European Dependable Computing Conference, pages 142–145, 2014/// 2014. Washington,
DC.

[11] Kestrel Institute. Apt: Automated program transformations.
http://www.kestrel.edu/home/projects/apt/.

[12] Matt Kaufmann and J. Strother Moore. An industrial strength theorem prover for a logic based on
common lisp. IEEE Transactions on Software Engineering, 23(4):203–213, 1997.

[13] Draper Labs. Fracture: an architecture-independent decompiler to llvm ir.

[14] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis &
transformation. In Proceedings of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE
Computer Society.

[15] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomas Kocisky, Andrew Senior, Fumin Wang,
and Phil Blunsom. Latent predictor networks for code generation. arXiv preprint arXiv:1603.06744,
2016.

[16] H. Massalin. Superoptimizer: a look at the smallest program. ACM SIGARCH Computer Architecture
News, 15(5):122–126, 1987.

[17] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Proceedings of the
eighteenth international conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 2013.

7



[18] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer. Post-compiler
software optimization for reducing energy. In Proceedings of the eighteenth international conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14, pages 639–652.
ACM, 2014.

[19] Matthew Smithson, Khaled ElWazeer, Kapil Anand, Aparna Kotha, and Rajeev Barua. Static binary
rewriting without supplemental information: Overcoming the tradeoff between coverage and correctness.
In Reverse Engineering (WCRE), 2013 20th Working Conference on, pages 52–61. IEEE, 2013.

[20] Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutter, and Koen De Bosschere. Diablo:
a reliable, retargetable and extensible link-time rewriting framework. In Proceedings of the Fifth IEEE
International Symposium on Signal Processing and Information Technology, 2005., pages 7–12. IEEE,
2005.

8


	Introduction
	Program Representation and Translation
	Applications of transformation
	Optimization
	Hardening
	Reduction.

	Techniques and tools
	Rewriting Program Representation
	References

