
A NEW ERA OF SOFTWARE FORENSICS WITH STATIC ANALYSIS

1 TECHNICAL WHITEPAPER

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS
WWW.GRAMMATECH.COM

A NEW ERA OF SOFTWARE FORENSICS WITH
STATIC ANALYSIS

A NEW ERA OF SOFTWARE FORENSICS WITH STATIC ANALYSIS

2 TECHNICAL WHITEPAPER

The term “forensics” refers to the method of using science to discover evidence of criminal ac-
tivity. Extending this to software broadens the use case to consider all the purposes of software
investigation techniques. Software is ubiquitous, and is a part of all mission-critical systems. As
such, software failures have tremendous real-world effects. In software, “forensics” refers to the
method of using tools and techniques to uncover software evidence for purposes such as criminal
investigations, civil cases (e.g. safety failures), commercial product failures, and security breaches.

BEYOND THE LAW

Investigating software mishaps serves multiple purposes. Though the approaches used may be
similar across cases, the outcomes of the investigations are not necessarily associated with crime.
A prime example would be the investigation of a software failure that has led to an accident result-
ing in injury, loss of life, or loss of property. Even if criminal activity or negligence is not suspected,
investigators still approach the case using techniques similar to those used in a criminal investiga-
tion.

Software forensics encompasses any activity that requires analysis of source and binary code for
investigation, post mortem analysis, or preventive measures. Some examples of use cases for
software forensics include (but not limited to) the following:

•	 Malicious code: A common software forensics scenario would be detecting malicious code
and tracking down its author. This code is written on purpose but with hidden intentions. Since
detection using manual techniques can be difficult, manual inspections and regular software
testing often fail to reveal the malicious code.

•	 Safety incidents: Software failures in safety-critical systems have significant impact on per-
sons and property. Manufacturers are obliged to track down and investigate the root cause
of these failures, either to settle civil suits or to research and prevent future incidents. For ex-
ample, the FDA used CodeSonar to investigate the quality of various infusion pumps’ control
software; and the NHTSB used CodeSonar to investigate Toyota’s unintended vehicle accel-
eration problem.

•	 Security vulnerabilities: Severe security breaches prompt an investigation into the root of the
problem. Security vulnerabilities could be either intentional malicious code or accidental bugs
in the software. Finding the root cause is critical for remediating these security vulnerabilities.
NIST provides a security incident guide, which provides details on security vulnerability inves-
tigation and documentation techniques.

•	 Software fault analysis: In general, any software fault may be the subject of investigation.
For example, a monitoring device providing inaccurate results could lead to overcharging a
customer (household “smart meters,” for example). Courts expect due diligence in software
development. Therefore, tools and techniques that are reasonable and commercially available
should be used to investigate the cause of the software defect. Defects found in a fielded

A NEW ERA OF SOFTWARE FORENSICS WITH STATIC ANALYSIS

3 TECHNICAL WHITEPAPER

product that could have been prevented in development may be considered negligence and
may point to culpbability of the developer.

THE ROLE OF STATIC ANALYSIS

Many approach software forensics operations using painstaking manual investigation of source
and binary code. Detecting errors or traces of manipulation manually is difficult and time consum-
ing. Automated tools and techniques, on the other hand, save time and money. Static analysis
tools excel at detecting software errors and security vulnerabilities. They do so automatically and
with high accuracy, and therefore play an important role in software forensics. Furthermore, static
analysis forms an important part of the software development toolchain – building in security, safe-
ty, and quality ahead time avoids many costly downstream problems.

Malware, for example, is detected by advanced static analysis tools, which perform tainted data
analysis from an input source (like a network connection) to where the data is used. If the des-
tination or “user” of this data is a function with a security vulnerability, there is the potential for
exploitation. GrammaTech’s CodeSonar can detect security vulnerabilities in binary code, which
is essential when source code is not available. Tainted data analysis can also determine if outside
input can be used to manipulate a vulnerability into a full-fledged security threat. Automating this
process saves huge amounts of time and effort that would have otherwise been spent on manual
code analysis. Similarly, static analysis can accelerate other software investigations such as the
research of a software safety incident to uncover software defects.

Figure 1: Benefits of advanced static analysis to software forensics.

Improved
Detection

Better
Traceability

Investigation
Efficiency

Evidence
Gathering

Hybrid
Source and
Binary Code

Analysis

A NEW ERA OF SOFTWARE FORENSICS WITH STATIC ANALYSIS

4 TECHNICAL WHITEPAPER

AUTOMATED BINARY CODE ANALYSIS FOR SOFTWARE FORENSICS

By automating something that is otherwise a painstaking job of manually reverse-engineering bina-
ry code, advanced static analysis provides many benefits, including the following:

• Improved detection: Automated static analysis can detect errors and vulnerabilities in binary
executable or library object file of any size and across multiple compilation units and/or func-
tions. The same analyses performed with manual approaches are difficult and often limited to
pre-determined parts of the binary code. Although automated analysis may not entirely replace
manual approaches, it certainly increases the detection rate and scope of analysis.

• Better traceability: One of the most difficult aspects of manual forensic investigation is trac-
ing control and data flow. The difficulty is exacerbated when only binary code is available.
Advanced static analysis performs control and data flow analysis on the entire scope of the
application. This larger scope of analysis improves detection but also reduces false positives
(errors reported that turn out to be false) and aids tainted data analysis. CodeSonar provides a
sophisticated web user interface to significantly help with investigating errors.

• Investigation efficiency: Automated vulnerability detection, tracing, and reporting greatly in-
crease the efficiency of binary code investigation. Software forensic investigators can rely on
CodeSonar’s binary analysis technology to quickly find vulnerabilities in the entire application.
Meanwhile, manual investigation is time consuming and have to be focused on specific areas
of the code. Considering the cost of manual binary code reverse-engineering and investiga-
tion, CodeSonar provides excellent return on investment.

• Reporting to support evidence gathering: Comprehensive error reporting, code visualiza-
tion, and integration with vulnerability management systems are crucial to supporting a soft-
ware security forensic investigation. Automating parts of the investigation-reporting means
saving time and reducing errors.

• Hybrid source and binary analysis: Although this paper has focused thus far on binary
code analysis, source code analysis is also critical if the source is available. For example, a
disgruntled employee may leave a malware in source code “hiding in plain sight,” which can
be detected with an analysis of the source code. Automated binary code analysis shares the
same features and benefits as those of automated source analysis. CodeSonar can report on
both source and binary results in the same project. An example follows.

A SECURITY INCIDENT INVESTIGATION

A rather nasty exploit was discovered in the open source project Unreal IRCD as reported in CVE-
2010-2075. In this case, external data received over a socket connection is used unchecked to
perform system commands – a textbook command injection vulnerability. Figure 2 illustrates the
source code in question in the read_packet() function.

A NEW ERA OF SOFTWARE FORENSICS WITH STATIC ANALYSIS

5 TECHNICAL WHITEPAPER

Figure 2: Code snipped from Unreal IRCD showing what appears to be a call to a harmless debug
logging macro.

From first glance, this doesn’t look like a problem. All that appears to be happening in this code
snippet is debug logging – simply detecting an error and dumping the information to a log of some
sort. However, the DEBUG3_LOG macro is purposely obfuscated and requires further investigation.
In Figure 3 we can see that the definition of DEBUG3_LOG is a call to system(), which executes
commands!

Figure 3: CodeSonar provides quick access to macro expansions, which helps discover what DE-
BUG3_LOG() actually does.

A NEW ERA OF SOFTWARE FORENSICS WITH STATIC ANALYSIS

6 TECHNICAL WHITEPAPER

Why does this look like an insider attack? This vulnerability was purposely written into the code
and the macros have two levels of indirection in order to mask their real purpose. A hacker group
claimed responsibility for this exploit and stated that it injected these macros into the download
archive for Unreal IRCD.

ANALYZING THE UNREAL IRCD VULNERABILITY WITH BINARY ANALYSIS

Using CodeSonar’s binary analysis, it’s possible to detect security vulnerabilities from object, library,
and executable code. This exploit is easier to spot with binary analysis. Figure 4 shows the warning
from using a function known to read data from outside the process and how this data is being used
in a call to system(x). The compiler has completely stripped away any obfuscation in the source.

Figure 4: The same section of code as in Figure 2 analyzed by CodeSonar binary analysis. The
vulnerability is much more obvious.

ADVANTAGES OF HYBRID SOURCE AND BINARY STATIC ANALYSIS

The Unreal IRCD vulnerability is a clear example of how static analysis, both for source and binary
code, is used to investigate a real security incident. Binary analysis can detect errors that might be
obfuscated in source or added maliciously after compilation. Below is a summary of the benefits
of hybrid static analysis:

•	 Two different views on the same vulnerability/defect: Once the compiler has optimized the
source code, the resulting compiled object code can reveal a different view of the detected
errors. Although source is easier to read and understand, having two views on the same prob-
lem is better than one.

A NEW ERA OF SOFTWARE FORENSICS WITH STATIC ANALYSIS

7 TECHNICAL WHITEPAPER

•	 Detect injected code, modified binaries, and insider attacks: A program’s source is not
its final state. Binary analysis can detect unwanted changes in the final executable. Code in-
jected into executables or download payloads can be analyzed for defects and vulnerabilities.
Malicious code added by inside attackers, possibly hidden in source, can be detected before
shipping to customers.

•	 Continue call graph into libraries and other binaries without source: CodeSonar can an-
alyze standard C/C++ libraries and any other third-party library or executable. When code
makes calls to these libraries, the analysis continues in the binary realm. Analyzing both source
and binary code means better detection and less false positives.

SUMMARY

Software forensics includes the investigation of source and binary code not only for the detection of
criminal activity, but also for malicious code, safety software failures, and security incidents. In most
cases, regardless of the purpose of the investigation, the techniques and tools used in software
forensics are similar. Static analysis is a pivotal tool in software forensics because it increases the
scope of analysis to the entire application and provides error detection with an accuracy difficult to
duplicate with manual analysis. An example of how CodeSonar reduces the effort of manual binary
code reverse-engineering was provided showing clear benefits in terms of security vulnerability
detection and evidence gathering.

A NEW ERA OF SOFTWARE FORENSICS WITH STATIC ANALYSIS

8 TECHNICAL WHITEPAPER

REFERENCES

“Federal Drug Administration (FDA) Recommends Static Analysis for Medical Devices”, GrammaT-
ech Case Study, 2014. https://www.grammatech.com/sites/default/files/grammatech-fda-case-
study.pdf

“GrammaTech Used In Toyota Unintended Acceleration Investigation”, GrammaTech Press Re-
lease, http://news.grammatech.com/grammatech-used-in-toyota-unintended-acceleration-inves-
tigation

“Computer Security Incident Handling Guide”, National Institute of Standards and Technology,
Special Publication 800-61 Rev 2. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-61r2.pdf

“Vulnerability Details : CVE-2010-2075”, CVE Details, 2010-06-15, http://www.cvedetails.com/
cve/cve-2010-2075

GrammaTech, Inc. is a leading developer of software-assurance tools and advanced cyber-
security solutions. GrammaTech helps organizations develop and release high quality software,
free of harmful defects that cause system failures, enable data breaches, and increase corporate
liabilities in today’s connected world. GrammaTech’s CodeSonar is used by embedded devel-
opers worldwide.

CodeSonar is a registered trademark of GrammaTech, Inc.
© GrammaTech, Inc. All rights reserved.

