
Boston Scientific

Bausch& Lomb

Cardinal Health

Covidien

Harvard Apparatus

HeartWare

Hologic

Philips Medical

VIASYS Healthcare

ZOLL Medical

FDA CASE STUDY | 1

In response to an alarming
number of complaints, the FDA
has announced more stringent
safety requirements for new
devices.

In addition to recommending
static analysis tools to manufac-
turers, the FDA itself has been
using GrammaTech’s CodeSonar
to investigate complaints and
find out why medical devices fail
in the field.

Federal Drug Administration (FDA)
Recommends Static Analysis for Medical Devices

Recalls for medical devices are at an all time high, and defective software is
one of the top causes. FDA data indicate that one in every three medical
devices that use software for operation has been recalled due to failure in the
software itself.

The FDA is now making medical device software quality a top priority, recom-
mending better software development practices, including static analysis tools,
to help manufacturers eliminate software defects during development.

Prevalent Pump Problems

Infusion pumps are commonly used in

patient care to deliver nutrients and

medications into a patient’s body in a

controlled manner. In the last 5 years, the

FDA has received over 10,000 complaints

per year about these pumps. Device-relat-

ed problems were responsible for a large

number of serious injuries and more than

500 deaths. In that same time frame,

manufacturers of infusion pumps issued

87 recalls, among the highest for any

medical device.

Some pump manufacturers say that most

problems occur when a nurse or health

care worker enters incorrect data. How-

ever, FDA officials found that many

deaths and injuries related to the devices

were caused by product design and

engineering flaws, rather than user error.

FDA Takes the Initiative

In response to this problem – one of the

most widespread medical device recalls in

recent history – the FDA introduced its

Infusion Pump Improvement Initiative to

establish requirements for pump manu-

facturers and proactively facilitate device

improvements. With this aggressive and

far-reaching initiative, the FDA is also

driving the industry toward improved

software development and verification

practices. The Infusion Pump Improve-

ment Initiative will eventually be broad-

ened to cover other types of devices.

Currently, the FDA does not require

third-party certification of source code for

safety-critical software. The FDA requires

only that manufacturers adhere to

conventional development processes, and

leaves validation and verification of

software to the discretion of the manu-

facturer. In other words, there is no

independent review required for

software used in medical devices, and

the FDA historically has not had the

bandwidth to assess the quality of the

code directly.

As a result, manufacturers have relied on

system-level testing and code reviews for

software verification and validation, but

the run-time execution testing performed

typically exercises only a small percent-

age of possible code paths. In the past, it

was possible to augment the testing with

a manual code review, which enabled

the examination of significantly more

paths; however, for the large code bases

associated with modern medical devices,

it is impossible to manually analyze the

truly huge number of paths in the

software. Traditional verification methods

find some bugs but do not verify the

reliability of the remaining code.

Exploring All Possible Paths

As part of its Infusion Pump Improve-

ment Initiative, the FDA is encouraging

manufacturers to use static code analysis.

With static analysis, software problems

are detected early in the device develop-

ment process, and it is possible to exam-

ine all possible execution paths.

Static analysis examines a software

application without actually executing

the software. CodeSonar, GrammaTech’s

advanced static analysis tool, works very

much like a compiler. It takes source

code as input, which it then parses and

converts to an intermediate representa-

tion (IR). Whereas a compiler would use

the IR to generate object code, CodeSo-

nar retains the IR, and uses the informa-

tion to perform an abstract or symbolic

execution of the program. During this

execution, program variables containing

actual concrete values are replaced by

corresponding symbolic values. The

analysis proceeds by using these symbolic

values to follow all possible paths

through the code. Along each path,

possible symbolic values are recorded. As

this execution proceeds, the analysis may

learn facts about the variables and how

they relate to each other. It uses these

facts to check for potential errors.

CodeSonar detects the most critical

defect types and security vulnerabilities.

These include run-time errors, such as

buffer overruns, null pointer dereferenc-

es, race conditions, resource or memory

leaks, and dangerous casts. CodeSonar

also detects inconsistencies in the code

that often indicate programmer misun-

derstandings, such as redundant condi-

tions or erroneous assumptions. When a

potential flaw is found in the software,

CodeSonar generates a warning that

allows the user to see not only where the

flaw occurs, but the conditions that must

hold in order for it to occur.

CodeSonar lends itself readily to verifica-

tion and validation activities and can

easily be incorporated as part of a

manufacturer’s software development

processes. Doing so facilitates a deeper

assessment of the code before releasing

it to market and helps establish the

conformance to good programming

practices.

CASE
STUDY

OTHER CUSTOMERS
IN THE MEDICAL DEVICE

INDUSTRY INCLUDE:

Photo courtesty Daniel Rosenbaum/The NY Times/Redux

Prevalent Pump Problems

Infusion pumps are commonly used in

patient care to deliver nutrients and

medications into a patient’s body in a

controlled manner. In the last 5 years, the

FDA has received over 10,000 complaints

per year about these pumps. Device-relat-

ed problems were responsible for a large

number of serious injuries and more than

500 deaths. In that same time frame,

manufacturers of infusion pumps issued

87 recalls, among the highest for any

medical device.

Some pump manufacturers say that most

problems occur when a nurse or health

care worker enters incorrect data. How-

ever, FDA officials found that many

deaths and injuries related to the devices

were caused by product design and

engineering flaws, rather than user error.

FDA Takes the Initiative

In response to this problem – one of the

most widespread medical device recalls in

recent history – the FDA introduced its

Infusion Pump Improvement Initiative to

establish requirements for pump manu-

facturers and proactively facilitate device

improvements. With this aggressive and

far-reaching initiative, the FDA is also

driving the industry toward improved

software development and verification

practices. The Infusion Pump Improve-

ment Initiative will eventually be broad-

ened to cover other types of devices.

Currently, the FDA does not require

third-party certification of source code for

safety-critical software. The FDA requires

only that manufacturers adhere to

conventional development processes, and

leaves validation and verification of

”

““The purpose of
software is to make
the device safer and
easier to use.

Users often do not
realize the extent to
which software
determines many of
the key functional
and performance
characteristics of the
system until some-
thing goes wrong.”

― FDA

software to the discretion of the manu-

facturer. In other words, there is no

independent review required for

software used in medical devices, and

the FDA historically has not had the

bandwidth to assess the quality of the

code directly.

As a result, manufacturers have relied on

system-level testing and code reviews for

software verification and validation, but

the run-time execution testing performed

typically exercises only a small percent-

age of possible code paths. In the past, it

was possible to augment the testing with

a manual code review, which enabled

the examination of significantly more

paths; however, for the large code bases

associated with modern medical devices,

it is impossible to manually analyze the

truly huge number of paths in the

software. Traditional verification methods

find some bugs but do not verify the

reliability of the remaining code.

Exploring All Possible Paths

As part of its Infusion Pump Improve-

ment Initiative, the FDA is encouraging

manufacturers to use static code analysis.

With static analysis, software problems

are detected early in the device develop-

ment process, and it is possible to exam-

ine all possible execution paths.

Static analysis examines a software

application without actually executing

the software. CodeSonar, GrammaTech’s

advanced static analysis tool, works very

much like a compiler. It takes source

code as input, which it then parses and

converts to an intermediate representa-

tion (IR). Whereas a compiler would use

the IR to generate object code, CodeSo-

nar retains the IR, and uses the informa-

tion to perform an abstract or symbolic

execution of the program. During this

execution, program variables containing

actual concrete values are replaced by

corresponding symbolic values. The

analysis proceeds by using these symbolic

values to follow all possible paths

through the code. Along each path,

possible symbolic values are recorded. As

this execution proceeds, the analysis may

learn facts about the variables and how

they relate to each other. It uses these

facts to check for potential errors.

CodeSonar detects the most critical

defect types and security vulnerabilities.

These include run-time errors, such as

buffer overruns, null pointer dereferenc-

es, race conditions, resource or memory

leaks, and dangerous casts. CodeSonar

also detects inconsistencies in the code

that often indicate programmer misun-

derstandings, such as redundant condi-

tions or erroneous assumptions. When a

potential flaw is found in the software,

CodeSonar generates a warning that

allows the user to see not only where the

flaw occurs, but the conditions that must

hold in order for it to occur.

CodeSonar lends itself readily to verifica-

tion and validation activities and can

easily be incorporated as part of a

manufacturer’s software development

processes. Doing so facilitates a deeper

assessment of the code before releasing

it to market and helps establish the

conformance to good programming

practices.

For more information:
www.grammatech.com
Email: info@grammatech.com

GrammaTech Headquarters:
6903 Rockledge Drive, Suite 1250
Bethesda, MD 20817

U.S. sales: 888-695-2668

International sales:
+1-607-273-7340

Email: sales@grammatech.com

© GrammaTech, Inc. All rights reserved. CodeSonar is a registered trademark of GrammaTech, Inc.

