
DETECTING DOMAIN-SPECIFIC CODING ERRORS WITH STATIC ANALYSIS

1 TECHNICAL WHITEPAPER

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.GRAMMATECH.COM

DETECTING DOMAIN-SPECIFIC CODING ERRORS
WITH STATIC ANALYSIS

DETECTING DOMAIN-SPECIFIC CODING ERRORS WITH STATIC ANALYSIS

2 TECHNICAL WHITEPAPER

INTRODUCTION

Static analysis is a term that describes techniques that compute run-time properties of pro-
grams, without actually executing them. Static-analysis tools are typically used to find program
defects. The first generation of static-analysis tools, exemplified by the lint family of tools, had
limited capability and were only capable of finding superficial defects. The latest generation,
such as GrammaTech’s CodeSonar® use highly sophisticated whole-program analyses to find
deep semantic problems [1]. This paper is about this class of tools, and refers to them as ad-
vanced static-analysis tools.

Out of the box, advanced static analysis tools are good at finding programming defects that
arise because a fundamental rule of the languages is being violated (e.g., a buffer overrun), or
because an API is being used incorrectly (such as closing the same file descriptor twice). Many
tools are also capable of finding violations of stylistic rules (e.g., don’t use goto). These tools
have proven to be effective at finding serious problems, and they have been widely adopted.
For example, see [2, 3].

An often under-appreciated aspect of these tools is that they are extensible. They can be con-
figured or programmed to find violations of domain-specific rules too. So if you have rules for
using an internal API, or require programmers to use a particular idiom, then it is often possible
to write a checker that signals violations of those rules. Programmers can, often with a little
programming effort, dramatically increase the value they get from the tools.

This paper describes some of the ways in which static-analysis tools can be extended. Section
2 describes how these tools work. Section 3 uses examples to describe several ways in which
the tools can be customized. Section 4 concludes with some recommendations.

HOW ADVANCED STATIC ANALYSIS WORKS

In order to understand the different ways in which extensions can be written, it first helps to
know what static analyis is, and how these tools work.

Static-analysis tools work very much like compilers. They take source code as input, which they
then parse and convert to an intermediate representation (IR). The IR typically comprises the
program’s abstract syntax tree (AST), the symbol table, the control-flow graph (CFG), and the
call graph. A block diagram of the architecture of an advanced static-analysis tool is shown
below in Figure 1. Whereas a compiler would use the IR to generate object code, static-analysis
tools retain the IR, and checkers are usually implemented by traversing or querying the IR look-
ing for particular properties or patterns that indicate defects. A simple checker, such as one
that looks for simple syntactic properties (e.g., goto statements), would search the abstract
syntax tree for constructs that match that pattern. A more complex checker might examine
the call graph or CFG.

The advanced tools get their power from sophisticated symbolic execution techniques that ex-
plore paths through the control-flow graph. These algorithms keep track of the abstract state
of the program and know how to use that state to exclude consideration of infeasible paths.

DETECTING DOMAIN-SPECIFIC CODING ERRORS WITH STATIC ANALYSIS

3 TECHNICAL WHITEPAPER

This level of complexity is required in order to find the serious bugs while keeping the level of
false positives low.

Although all advanced static-analysis tools have an architecture much like the one shown, the
details differ somewhat. In GrammaTech CodeSonar, all of the intermediate representations
are retained, and an interface allows end users to author code that inspects these representa-
tions in various ways. The techniques with which new checkers can be written are described
in the next section.

SPECIAL CHALLENGES FACING AUTOMOTIVE SOFTWARE DEVELOPERS

No two tools provide exactly the same interface or techniques for implementing custom check-
ers, but three mechanisms are common, and are described in more detail in the subsequent
subsections:

»	 Existing checkers can be extended by adding directives to a configuration file.

»	 The user can add annotations to their code that instruct the analysis to look for
certain properties. In CodeSonar, these annotations can be done on the side in an
aspect-oriented fashion if users do not wish to perturb the source code.

»	 An API allows users access to all of the intermediate representations. Typically, a
visitor pattern is used that allows extensions to piggyback on traversals the analysis
is already doing.

 Although most tools have similar mechanisms, the examples are shown for CodeSonar.

Figure 1. The architecture of an advanced static-analysis tool.

DETECTING DOMAIN-SPECIFIC CODING ERRORS WITH STATIC ANALYSIS

4 TECHNICAL WHITEPAPER

CONFIGURATION FILES

These advanced static analysis tools implement dozens of checkers. Often, a user needs a
checker that is only slightly different than a built-in one, and many of them have been de-
signed to be extensible. One class of checkers finds functions whose use is forbidden. For
example, the C library function gets is notoriously insecure (and is now officially deprecated).
The checker is implemented by a phase that finds references to function names, and then
matches them against a set of regular expressions. It is a simple matter to add additional reg-
ular expressions to this set by adding lines to a configuration file.

A similar process applies to extend the set of functions whose return value should always be
checked, or to specify which functions take format string parameters.

CODE ANNOTATIONS

The second way in to write checkers is to add annotations to the code.

Suppose for example that there is an internal function named foo that takes a single integer
parameter, and that it is dangerous for that parameter to have the value -1. A check for this
case could be implemented by adding some code to the body of foo as follows:

void foo(int x)
{
#ifdef __CSURF__
 csonar_trigger(x, “==”, -1,
 “Dangerous call to foo()”);
#endif __CSURF__
 …
}

The #ifdef construct ensures that this new code is not seen by the regular compiler. How-
ever when this code is analyzed by CodeSonar, the call to csonar_trigger is seen. Thus
this call is never actually executed, but is instead interpreted by the tool as a directive to the
underlying analysis engine. If the analysis considers that the trigger condition may be satisifed,
then it will issue a warning with the given message.

Of course in most cases it is not appropriate to require that programmers interleave these
annotations with the code, so there is an alternative way to implement this kind of check that
allows it to be written in a separate file, which avoids the need for the code to be edited. This
approach is also appropriate when the source code for foo is not available, such as when
it is in a third-party library. To do this, the author of the checker would write a replacement
function as follows:

void csonar_replace_foo(int x)
{
 csonar_trigger(x, “==”, -1,
 “Dangerous call to foo()”);

DETECTING DOMAIN-SPECIFIC CODING ERRORS WITH STATIC ANALYSIS

5 TECHNICAL WHITEPAPER

 foo();
}

When the analysis sees the definition of csonar_replace_foo, it treats all calls in the code
to foo (except the one inside csonar_replace_foo) as if they were calls to csonar_re-
place_foo instead.

This trigger idiom is good for checking temporal properties, particularly sequences of function
calls. Suppose there is a rule that says that bar should never be called while foo is executing.
A check might be implemented as follows:

static int foo_is_executing = 0;
void csonar_replace_foo(int x) {
 foo_is_executing = 1;
 foo();
 foo_is_executing = 0;
}

void csonar_replace_bar(void) {
 csonar_trigger(foo_is_executing, “==”, 1,
 “Call to bar from foo”);
 bar();
}

Note that a global state variable is used to record whether or not foo is active. Before entry to
foo it is set to one, and then reset to zero after foo returns. This variable is then checked in
the trigger in bar, and if set to one, a warning will be issued.

The example above shows how a global property might be checked. The same mechanism
can be used to write checks for properties of objects. For example, it is illegal to read from a
file object after it has been closed. In such a case the state being checked must be associated
with the file object. The extension API allows users to specify attributes that can be attached to
objects. These can be thought of as state variables that can be associated with objects. In the
example just given, an attribute can be used to encode whether a file object is open or closed,
and the checker for a reader function can test the value of that attribute and issue a warning
if the file is in fact closed.

This approach allows users to author static checks almost as if they were writing dynamic
checks. The API for this kind of check is small, and the language is regular C, so there is a
shallow learning curve. This simplicity is deceptive — the technique can be used to implement
fairly sophisticated checks. In CodeSonar, many of the out-of-the-box checks are implemented
this way.

API FOR INTERMEDIATE REPRESENTATIONS

The final way to implement a custom check is to use the API that gives access to the underly-
ing IR. This technique has been used by CodeSonar users to implement a variety of checkers.

DETECTING DOMAIN-SPECIFIC CODING ERRORS WITH STATIC ANALYSIS

6 TECHNICAL WHITEPAPER

For example, one company makes a highly sophisticated electronics manufacturing system,
controlled by in excess of a million lines of code. They employ a custom idiom for handling
hardware errors. If this is not followed consistently, then it can lead to excessive expensive
downtime for their customers. They created a custom checker in CodeSonar that finds loca-
tions in the code where the idiom is incorrect.

This API can be used for other program analysis tasks too. A medical device company uses
CodeSonar to identify potential tasking problems in their code, and to emit information that
allows them to interactively explore properties of stack configurations.

Many checks can be written using a visitor pattern. A visitor is a function that is invoked
on every IR element of the appropriate type; there are different visitor types for different IR
constructs. When they are present, visitors piggyback on the various traversals carried out by
the analysis. Visitors can be defined for files, identifiers, subprograms, and nodes in the con-
trol-flow graph (which correspond roughly to program statements), and the syntax tree. The
interface to a visitor allows for pattern matching against the construct. This way a checker au-
thor can easily search for constructs without having to know exactly how they are represented.

For example, suppose there is a rule that no variable is allowed to contain upper-case char-
acters. The checker for this would be best implemented by writing a function that takes an
identifier as input, checks that it represents a variable, scans it for upper-case letters, and
issues a warning if one is found. This function would be registered as a visitor for the table of
identifiers.

CodeSonar has an additional kind of visitor, which is invoked during the path exploration of
the control-flow graph. At each step along the path, the check can query the abstract state
of the program, so the implementation can ask questions such as “what is the value of this
variable at this point”. This allows the checker author to write sophisticated checks that lever-
age the built-in program analysis capabilities of the tool. A key aspect of this kind of checker
is that it uses the part of the analysis that eliminates the exploration of infeasible paths, which
automatically reduces the probability of false positive results.

RECOMMENDATIONS

Advanced static-analysis tools have become essential tools for software developers because
they have proven effective at finding serious flaws. Users of such tools should consider writing
custom checkers in order to dramatically increase their return on investment.

DETECTING DOMAIN-SPECIFIC CODING ERRORS WITH STATIC ANALYSIS

7 TECHNICAL WHITEPAPER

REFERENCES:

1. GrammaTech Inc., CodeSonar, http://www.grammatech.com/products/codesonar/

2. Jetley, R. P., Anderson, P., and Jones, P. L., Static Analysis of Medical Device Software using CodeS-
onar. In Static Analysis Workshop (SAW). 2008. Tucson, AZ: ACM Press.

3. Pope,G., Ferrari,K., and Oliver,B., Give Your Defects Some Static -- Using Static Analyzers to De-
bug Your Code. in Better Software. July, 2008. pp. 36-42.

4. U.S.-Canada Power System Outage Task Force, Final Report on the August 14, 2003 Blackout in
the United States and Canada: Causes and Recommendations. 2004.

GrammaTech, Inc. is a leading developer of software-assurance tools and advanced cyber-

security solutions. GrammaTech helps organizations develop and release high quality software,

free of harmful defects that cause system failures, enable data breaches, and increase corporate

liabilities in today’s connected world. GrammaTech’s CodeSonar is used by embedded developers

worldwide.

CodeSonar is a registered trademark of GrammaTech, Inc.
© GrammaTech, Inc. All rights reserved.

