
CONQUERING COMPLEX JAVA CONCURRENCY BUGS WITH CODESONAR

1 TECHNICAL WHITEPAPER

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.GRAMMATECH.COM

CONQUERING COMPLEX JAVA CONCURRENCY
BUGS WITH CODESONAR

CONQUERING COMPLEX JAVA CONCURRENCY BUGS WITH CODESONAR

2 TECHNICAL WHITEPAPER

INTRODUCTION

Multicore processors have opened the door to new levels of performance in embedded appli-
cations. To unlock multicore’s full performance potential, advanced programming techniques
such as concurrency and parallel computing are necessary. Applications must be designed so
that individual portions of a program can be run in parallel on the various processor cores.
Thus, while multicore platforms bring breakthrough processing power, they also add complex-
ity, including a new class of particularly pernicious concurrency bugs.

These new bugs, which include race conditions, deadlocks, livelocks, resource starvation, and
non-deterministic behavior, are difficult to find when they manifest and even more difficult
to diagnose. Concurrency bugs can exhibit unusual symptoms that surface long after the
initial events that triggered them, making them particularly tricky, and in addition, they are
frequently very hard to reproduce. Reducing the risks of concurrency bugs therefore requires a
multifaceted approach that includes peer code reviews, advanced static analysis, and testing.

Advanced static analysis solutions have been available to address concurrency problems for
C and C++ programs. But until now, the industry has lacked a comprehensive static analysis
solution that addresses concurrency problems that are specific to Java programs. Java is in-
creasingly popular with embedded developers, and with 28% of them using Java today, it is
now the third most popular language for embedded systems, after C and C++.

Cutting-edge academic research into software concurrency behavior at Edinburgh University
led to the development of ThreadSafe, the industry’s most sophisticated static analysis tool
targeting concurrency behavior in Java programs. GrammaTech, whose CodeSonar suite of
program analysis tools already includes the most advanced static analysis for C and C++, and
interoperability with FindBugs and PMD open-source tools for Java, now includes ThreadSafe
as a fully integrated plug-in to CodeSonar, to offer comprehensive analysis of Java programs.

ADVANTAGES OF JAVA

Java, the world’s most popular programming language, is a high-level language designed to be
reliable, secure, platform-independent, and easy to learn. Widely used in enterprise and server
applications, Java is also a good choice for embedded systems, where it is frequently used for
system-control functions and user interfaces. With the adoption of multicore architectures and
the increased performance and efficiency they bring to embedded platforms, the use of Java
on embedded devices is on the rise. One of the fundamental weaknesses of C and C++ lan-
guages is that they were not designed for concurrency. In contrast, Java has always had built-in
support for multithreading within the programming language syntax, source compilers, and
standard libraries. Additionally, Java 5 added the java.util.concurrent library, which
was extended in Java 6 and Java 7 to provide extensive support for concurrent and parallel
programming.

Still, writing a correct concurrent Java program is notoriously difficult and exponentially harder
with the advent of multicore architectures. Past generations of processors relied on incremen-
tal increases in processor clock speeds to boost performance. Multicore processors, on the
other hand, use parallel processors and higher levels of concurrency to achieve fully-scalable

CONQUERING COMPLEX JAVA CONCURRENCY BUGS WITH CODESONAR

3 TECHNICAL WHITEPAPER

performance. They also allow the cores
to communicate directly through shared
hardware caches for better performance
and improved resource allocation, which
further adds to programming complexity
(see Figure 1).

Further, since most embedded developers
are new to multicore programming mod-
els, the risk of introducing concurrency
bugs in Java programs is even more signifi-
cant, and for mission-critical, safety-critical
applications, these risks pose a clear and
present danger.

MULTITHREADING

Concurrency is the notion of multiple things happening at the same time. In the real world,
there are always many things happening at once, and humans address this by multitasking.
We start a task, and, before finishing it, begin the next. We switch back and forth, working
on multiple tasks concurrently. When computers multitask, they do so by multithreading. An
application is broken into multiple threads that can be run concurrently, i.e. in overlapping
intervals of time. Multithreading is used in both single processor and multiprocessor/multicore
environments, and serves two distinct purposes: concurrency and parallelism.

In the case of single processor systems, for example, threads are used to enable asynchronous
handling of interactions with other software and the real world concurrently. In multicore sys-
tems, threads serve the additional purpose of allowing portions of the software, i.e. threads,
to run in parallel across the various processor cores. A great deal of multithreaded code ex-
isted before the introduction of
multicore processors; however,
if a multithreaded program runs
properly in a single processor sys-
tem, there is no guarantee that
concurrency bugs will not occur
when the program runs on a
multicore processor.

INTERLEAVING

Interleaving is one of the great-
est strengths of concurrency, but
it is also the main source of its
problems. Interleaving means
that each time a thread runs, the

Figure 1.

Figure 2.

CONQUERING COMPLEX JAVA CONCURRENCY BUGS WITH CODESONAR

4 TECHNICAL WHITEPAPER

order in which instructions are executed varies depending on what other threads are running
at the same time. When programs are properly written, interleaving can improve performance,
but if bugs are introduced through programming errors, interleaving can lead to unpredictable
results.

The number of possible interleavings increases enormously as the number of instructions grows,
a phenomenon known as combinatorial explosion. Even the smallest threads have many possible
interleavings. Real world concurrent programs have astronomical numbers of legal interleavings,
so testing every interleaving is infeasible. Likewise, it is impossible to explore every potential
execution path using peer code reviews or walkthroughs. This is where advanced static analysis
tools excel.

RACE CONDITIONS

One of the most common unintended consequences of thread interleaving is the race condition,
a class of problems that do not even exist in a single-threaded world. A race condition is any situ-
ation in which the combined outcome of two or more threads of execution varies, depending on
the precise order in which the interleaved instructions of each are executed. This happens when
multiple threads access a shared piece of data, with at least one of them changing its value with-
out an explicit synchronization operation to coordinate the accesses. Depending on the thread
interleaving, the system can be left in an inconsistent state.

A simple example of a race condition is a manufacturing assembly line that maintains a running
count of items completed with separate controllers responsible for counting each kind of object.
In a multithreaded system, a race condition can arise because the controllers read and write a
shared piece of data: the count. If two different types of items, for example items A and B, are
completed at the same time, the controllers for A and B may both read the same starting counter
value C, and write the same updated value C+1, when in fact the correct final value should be
C+1+1. Many interleavings result in correct counts, but in cases where they do not, the conse-
quences can be critical (see Figure 3 below).

Figure 3.

CONQUERING COMPLEX JAVA CONCURRENCY BUGS WITH CODESONAR

5 TECHNICAL WHITEPAPER

DEADLOCKS, LIVELOCKS, AND STARVATION

In order to protect shared resources and to eliminate race conditions, a number of techniques are
available, for example, synchronizing via locks. These techniques can introduce problems of their
own, however, including performance bottlenecks and increased code complexity. Worse, they
can introduce problems such as deadlocks, livelocks, and starvation.

In a deadlock, two or more threads prevent each other from making progress by each holding
a lock needed by the other. Consider, for example, multiple assembly lines that share a count
value of the total number of items currently under assembly, and a second bad_items value
that records how many finished items have failed quality control. One thread acquires the lock
on count, another acquires the lock on bad_items. Now, neither thread can obtain the sec-
ond lock it needs, so neither can carry out its operations or get to the point where it will release
its lock. Both threads are completely stuck and unable to complete their updates (see Figure 4).

While much less common than deadlocks, both livelocks and starvation are problems that every
designer of concurrent software is likely to encounter. A livelock is similar to a deadlock, except
in a livelock the threads are not blocked, but instead simply too busy responding to each other
to resume work. The classic real world example of livelock occurs when two people meet in a
narrow corridor and try to pass each other, but both move in the same direction at the same time,
thus continuing to block each other.

In starvation, threads are said to starve when they are left waiting for a lock that is held by an-
other thread for a very long time. If the thread hogging the lock is invoked very frequently, other
threads needing the lock will starve.

NONDETERMINISM

Concurrency is particularly problematic because it is non-deterministic. In other words, it is abso-
lutely possible for a program to run hundreds of thousands of times using the same inputs and
returning the same correct results, only to fail the next time it runs. Therefore, even with rigorous
testing, concurrency bugs can remain undetected. In fact, no amount of traditional testing can

Figure 4.

CONQUERING COMPLEX JAVA CONCURRENCY BUGS WITH CODESONAR

6 TECHNICAL WHITEPAPER

guarantee that a program will not eventually fail due to a concurrency bug. This is because the
specific sequence of instructions that the processors run in each thread is essentially non-deter-
ministic. There are so many possible orderings in which the instructions are interleaved that it is
impossible for a testing system to cover all of the permutations. Advanced static analysis, on the
other hand, has the ability to deduce the consequences of all possible interleavings, and examine
potential execution paths for problems. This difference makes it an invaluable tool for finding
concurrency problems.

HOW STATIC ANALYSIS WORKS

Advanced static analysis tools use symbolic execution engines to identify potential problems in
a program without actually having to run the program. They work much like compilers, taking
source code as input, then parsing it and converting it to an Intermediate Representation (IR).
Whereas a compiler would use the IR to generate object code, static analysis tools retain the IR,
also called the model.

Checkers perform analysis on the code to find common defects, violations of policies, etc. Check-
ers operate by traversing or querying the model, looking for particular properties or patterns
that indicate defects. Sophisticated symbolic execution techniques explore paths through a con-
trol-flow graph, which is a data structure representing all paths that might be traversed through
a program during its execution.

Algorithms keep track of the abstract state of the program and know how to use that state to
exclude consideration of infeasible paths. The depth of the model determines the effectiveness
of the tool. That depth is based on how much knowledge of program behavior is built-in, how
much of the program it can take into account at once, and how accurately it reflects actual pro-
gram behavior (see Figure 5 below).

Figure 5.

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Execution_%28computers%29

CONQUERING COMPLEX JAVA CONCURRENCY BUGS WITH CODESONAR

7 TECHNICAL WHITEPAPER

OPEN SOURCE TOOLS

Many developers take advantage of popular open source tools, including FindBugs, PMD, and
CheckStyle, to find bugs in Java. The most widely used of these, FindBugs, uses static analysis
to identify hundreds of different types of potential errors in Java programs. FindBugs operates
on Java bytecode, the form of instructions that the Java virtual machine executes. Both PMD
and CheckStyle detect bad practices and check the code for adherence to coding standards.

Each of these tools has its strengths. An important advantage of static analysis tools, in general,
is that they can be used early in development to find bugs even before testing begins. Most of
the static analysis tools available for Java are general purpose and catch a range of surface level
problems that are valuable to be found early in development.

THREADSAFE TARGETS CONCURRENCY BUGS

In contrast to the open source tools described above, ThreadSafe is tailored for very pre-
cise identification of concurrency problems in Java. It uses advanced static analysis of
source code with whole program interprocedural analysis. Due to the depth of its mod-
el, ThreadSafe is able to find concurrency problems that are missed by other tools.

ThreadSafe identifies a wide variety of application risks and security vulnerabilities. In addition to
identifying race conditions and deadlocks, ThreadSafe can pinpoint unpredictable results caused
by incorrect use of the concurrent collection libraries provided by java.util.concurrent, bad er-
ror handling, or incorrect synchronization when coordinating access to shared non-concurrent
collections. It can also help diagnose performance bottlenecks caused by incorrect API usage,
redundant synchronization, and unnecessary use of a shared mutable state.

A good framework can help a programmer build safe concurrent
applications. ThreadSafe incorporates an understanding of Java li-
braries and frameworks that have concurrent behavior and multi-
ple code entry points, including the standard java.util.concurrent
library and also the Android framework for mobile applications.

ThreadSafe enables developers to discover the underlying design inten-
tions of existing concurrent code, and recognize when new code deviates
from this design. It provides early warnings when new concurrency de-
fects are first introduced, and, when integrated with CodeSonar’s work-
flow management and additional group development features, provides
developers with a powerful ability to identify and understand them.

INTEGRATED SOLUTION

GrammaTech’s CodeSonar offers the industry’s deepest source code
analysis and provides developers a unified interface for analyzing C,
C++, and Java source code. CodeSonar’s rich development environment

Figure 6.

CONQUERING COMPLEX JAVA CONCURRENCY BUGS WITH CODESONAR

8 TECHNICAL WHITEPAPER

GrammaTech, Inc. is a leading developer of software-assurance tools and advanced cyber-

security solutions. GrammaTech helps organizations develop and release high quality software,

free of harmful defects that cause system failures, enable data breaches, and increase corporate

liabilities in today’s connected world. GrammaTech’s CodeSonar is used by embedded developers

worldwide.

CodeSonar is a registered trademark of GrammaTech, Inc.
© GrammaTech, Inc. All rights reserved.

includes automated work flow and powerful tools for program analysis, program inspection,
program understanding and architecture visualization that can be used for both embedded
and hosted platforms.

CodeSonar provides an infrastructure for managing the results of static analysis and is de-
signed for groups of people to collaborate at managing and acting on those results effectively.
For example, when defects are found, developers can attach an annotation to a specific warn-
ing that is visible to other team members who are on the system. The annotation – such as
a note, property, or assignment of an action to an individual – will help to manage work and
allow users to clearly see how the set of warnings is changing over time.

Warnings can also be superimposed on CodeSonar’s powerful call graph visualization, for easy un-
derstanding of where problems are originating within the whole system. Warnings can also be chart-
ed to help identify the most risky modules. This rich collaborative infrastructure helps teams avoid
duplication of effort and helps improve the overall productivity of a team working on complex code.

When used in conjunction with other code quality practices such as code reviews and inte-
gration testing, GrammaTech’s CodeSonar with ThreadSafe can significantly reduce the risk of
field failures due to undiscovered concurrency bugs in deployed applications. To learn more
about CodeSonar, and for a free trial, contact GrammaTech.

REFERENCES:

1. Anderson, Paul. “Finding Concurrency Errors with GrammaTech Static Analysis.” GrammaTech.
GrammaTech, n.d. Web. 19 Dec. 2013. <http://www.grammatech.com/resources/whitepa-
pers>.

2. Atkey, Robert. “Maintaining Safe Concurrent Code with ThreadSafe.” Contemplateltd.com.
Contemplate, n.d. Web. 12 Dec. 2013. <http://www.contemplateltd.com/threadsafe/maintain-
ing-safe-concurrent-code-with-threadsafe>.

3. Sannella, Don. “Testing Just Isn’t Good Enough Anymore.” Contemplateltd.com. Contemplate,
n.d. Web. 12 Dec. 2013. <http://www.contemplateltd.com/threadsafe/testing-just-isnt-good-
enough-anymore>.

4. Ylvisaker, Ben. “Multi-Core Processors Are a Headache for Multithreaded Code.” Web log post.
GrammaTech.com. GrammaTech, 17 Apr. 2013. Web. 19 Dec. 2013. <http://www.gramma-
tech.com/blog/multi-core-processors-headache-for-multithreaded-code>.

5. McCabe, Zach D. “On Target: Embedded Systems.” Web log post. On Target: Embedded Sys-
tems. VDC Research, 23 Aug. 2013. Web. 19 Dec. 2013. <http://blog.vdcresearch.com/embed-
ded_sw/2013/08/a-turbo-shot-of-java.html>.

