
1 TECHNICAL
WHITEPAPER

SEI CERT-C++ RULES AND
RECOMMENDATIONS
MAPPED TO CODESONAR® 6.2 WARNING CLASSES

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.GRAMMATECH.COM

http://www.grammatech.com/

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 6.2 WARNING CLASSES

2 TECHNICAL
WHITEPAPER

INTRODUCTION

The SEI CERT C++ Coding Standard (CERT-C++) provides rules and recommendations for

secure coding in the C++ programming language. The goal of these rules and recommendations

is to develop safe, reliable, and secure systems, for example by eliminating undefined behaviors

that can lead to undefined program behaviors and exploitable vulnerabilities. Conformance to

the coding rules defined in this standard is necessary (but not sufficient) to ensure the safety,

reliability, and security of software systems developed in the C++ programming language.

CodeSonar 6.2 includes a large number of warning classes that support checking for the CERT-

C++ rules and recommendations. Every CodeSonar warning report includes the identifiers of

any CERT-C++ rules and recommendations that are closely mapped to the warning’s class. (The

close mapping for a warning class is the set of categories—including CERT-C++ rules and

recommendations—that most closely match the class, if any).

You can configure CodeSonar to enable and disable warning classes mapped to specific CERT-

C++ rules and recommendations, or use build presets to enable all warning classes that are

closely mapped to any CERT-C++ rules and recommendations. In addition, you can use the

CodeSonar search function to find warnings related to specific CERT-C++ rules or

recommendations, or to any CERT-C++ rule or recommendation.

For more information on the SEI CERT C++ Coding Standard:

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=8804668

The remainder of this document comprises two tables:

• A table showing the close mapping between CodeSonar warning classes and the SEI

CERT C++ Coding Standard.

• A table showing the broad mapping between CodeSonar warning classes and the SEI

CERT C++ Coding Standard. The broad CERT-C++ mapping for a CodeSonar warning

class includes the close CERT-C++ mapping for the class, plus any other CERT-C++ rules

and recommendations that are related to the class in a meaningful way, but not eligible for

the close mapping.

GrammaTech is a leading global provider of application testing (AST) solutions used by the

world’s most security conscious organizations to detect, measure, analyze and resolve

vulnerabilities for software they develop or use. The company is also a trusted cybersecurity

and artificial intelligence research partner for the nation’s civil, defense, and intelligence

agencies.

CodeSonar and CodeSentry are registered trademarks of GrammaTech, Inc.

© GrammaTech, Inc. All rights reserved.

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 6.2 WARNING CLASSES

3 TECHNICAL
WHITEPAPER

SEI CERT C++ CODING STANDARD CLOSE MAPPING (CODESONAR V6.2P0)

The following table contains CodeSonar warning classes that are closely mapped to CERT-

C++ rules and recommendations.

CERT-C++ Rules and Recommendations Closely Mapped CodeSonar Warning Classes

CTR50-CPP Guarantee that container indices and iterators are

within the valid range

Buffer Overrun

Buffer Underrun

Pointer Before Beginning of Object

Pointer Past End of Object

Tainted Buffer Access

Type Overrun Type

Underrun

CTR52-CPP Guarantee that library functions do not overflow Buffer Overrun

Use of OemToAnsi

Use of OemToChar

Use of StrCatChainW

 Use of getopt

Use of getpass

 Use of gets

Use of getwd

Use of recvmsg

 Use of strcat

Use of strchr

Use of strcmp

Use of strcoll

Use of strcpy

Use of strcspn

Use of strlen

Use of strpbrk

Use of strrchr

Use of strspn

Use of strstr

Use of strtok

Use of strtrns

Use of syslog

DCL50-CPP Do not define a C-style variadic function Ellipsis

DCL51-CPP Do not declare or define a reserved identifier Declaration of Reserved Name

Macro Name is C Keyword

DCL56-CPP Avoid cycles during initialization of static objects Initialization Cycle

Unordered Initialization

DCL59-CPP Do not define an unnamed namespace in a header file Anonymous Namespace in Header

File

DCL60-CPP Obey the one-definition rule Function Defined in Header File

Object Defined in Header File

ERR50-CPP Do not abruptly terminate the program Use of Abort

 Use of exit

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 6.2 WARNING CLASSES

4 TECHNICAL
WHITEPAPER

ERR52-CPP Do not use setjmp() or longjmp() Use of<setjmp.h>

 Use of longjmp

Use of setjmp

ERR54-CPP Catch handlers should order their parameter types from most
derived to least derived

Unreachable

Catch

ERR57-CPP Do not leak resources when handling exceptions Leak

EXP53-CPP Do not read uninitialized memory Return Pointer to

Local Uninitialized

Variable

EXP54-CPP Do not access an object outside of its lifetime Use AfterClose

 Use After Free

EXP57-CPP Do not cast or delete pointers to incomplete classes Conversion: Pointer to Incomplete

FIO51-CPP Close files when they are no longer needed Leak

INT50-CPP Do not cast to an out-of-range enumeration value Cast Alters Value

Coercion Alters Value

MEM50-CPP Do not access freed memory Use After Free

MEM51-CPP Properly deallocate dynamically allocated resources Double Free

MSC52-CPP Value-returning functions must return a value from all exit
paths

Missing Return Statement

MSC53-CPP Do not return from a function declared [[noreturn]] Return from noreturn

OOP50-CPP Do not invoke virtual functions from constructors or destructors Virtual Call in Constructor

Virtual Call in Destructor

OOP51-CPP Do not slice derived objects Object Slicing

OOP52-CPP Do not delete a polymorphic object without a virtual destructor delete with Non-Virtual Destructor

OOP53-CPP Write constructor member initializers in the canonical order Out of Order Member Initializers

STR50-CPP Guarantee that storage for strings has sufficient space for

char- acter data and the null terminator

Buffer Overrun

No Space For Null

Terminator Type Overrun

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 6.2 WARNING CLASSES

5 TECHNICAL
WHITEPAPER

SEI CERT C++ CODING STANDARD BROAD MAPPING (CODESONAR V6.2P0)

The following table contains CodeSonar warning classes that are broadly mapped to CERT-

C++ rules and recommendations.

Warning classes that are also in the close mapping are shown in bold text.

CERT-C++ Rules and Recommendations Broadly Mapped CodeSonar Warning Classes

CTR50-CPP Guarantee that container indices and iterators are within the

valid range

Buffer Overrun

Buffer Underrun

Pointer Before Beginning of Object

Pointer Past End of Object

Tainted Buffer Access

Type Overrun

Type Underrun

CTR51-CPP Use valid references, pointers, and iterators to reference

elements of a container

Use After Free

CTR52-CPP Guarantee that library functions do not overflow Buffer Overrun

Use of OemToAnsi

Use of OemToChar

Use of StrCatChainW

Use of getopt

Use of getpass

Use of gets Use

of getwd Use of

recvmsg Use of

strcat Use of

strchr Use of

strcmp Use of

strcoll Use of

strcpy Use of

strcspn Use of

strlen Use of

strpbrk Use of

strrchr Use of

strspn Use of

strstr Use of

strtok Use of

strtrns

Use of syslog

CTR53-CPP Use valid iterator ranges Buffer Overrun

CTR54-CPP Do not subtract iterators that do not refer to the same

container

Comparison of Unrelated Pointers

Subtraction of Unrelated Pointers

DCL50-CPP Do not define a C-style variadic function Ellipsis

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 6.2 WARNING CLASSES

6 TECHNICAL
WHITEPAPER

DCL51-CPP Do not declare or define a reserved identifier Declaration of Reserved Name

Macro Name is C Keyword

DCL53-CPP Use valid iterator ranges Buffer Overrun

DCL54-CPP Do not subtract iterators that do not refer to the same
container

Comparison of Unrelated Pointers

Subtraction of Unrelated Pointers

DCL56-CPP Avoid cycles during initialization of static objects Initialization Cycle

Unordered Initialization

DCL59-CPP Do not define an unnamed namespace in a header file Anonymous Namespace in

Header File

DCL60-CPP Obey the one-definition rule Function Defined in Header File

Object Defined in Header File

ERR50-CPP Do not abruptly terminate the program Use of abort

Use of exit

ERR52-CPP Do not use setjmp() or longjmp() Use of <setjmp.h>

Use of longjmp Use

of setjmp

ERR54-CPP Catch handlers should order their parameter types from most
derived to least derived

Unreachable Catch

ERR56-CPP Guarantee exception safety Leak

ERR57-CPP Do not leak resources when handling exceptions Leak

ERR62-CPP Detect errors when converting a string to a number Use of atof

Use of atoi

Use of atol

Use of atoll

EXP53-CPP Do not read uninitialized memory Return Pointer to Local

Uninitialized Variable

EXP54-CPP Do not access an object outside of its lifetime Use After Close

Use After Free

EXP57-CPP Do not cast or delete pointers to incomplete classes Conversion: Pointer to Incomplete

EXP62-CPP Do not access the bits of an object representation that are not
part of the object's value representation

Use of memcmp

Use of memset

EXP63-CPP Do not rely on the value of a moved-from object Null Pointer Dereference

FIO50-CPP Do not alternately input and output from a file stream without an
intervening positioning call

Input After Output Without Positioning

Output After Input Without Positioning

FIO51-CPP Close files when they are no longer needed Leak

INT50-CPP Do not cast to an out-of-range enumeration value Cast Alters Value

Coercion Alters Value

MEM50-CPP Do not access freed memory Use After Free

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 6.2 WARNING CLASSES

7 TECHNICAL
WHITEPAPER

MEM51-CPP Properly deallocate dynamically allocated resources Double Free

Free Non-Heap

Variable Leak

Type Mismatch

MSC52-CPP Value-returning functions must return a value from all exit paths Missing Return Statement

MSC53-CPP Do not return from a function declared [[noreturn]] Return from noreturn

OOP50-CPP Do not invoke virtual functions from constructors or destructors Virtual Call in Constructor

Virtual Call in Destructor

OOP51-CPP Do not slice derived objects Object Slicing

OOP52-CPP Do not delete a polymorphic object without a virtual destructor delete with Non-Virtual Destructor

OOP53-CPP Write constructor member initializers in the canonical order Out of Order Member Initializers

OOP57-CPP Prefer special member functions and overloaded operators to C
Standard Library functions

Use of memcmp

Use of memset

STR50-CPP Guarantee that storage for strings has sufficient space for
character

data and the null terminator

Buffer Overrun

No Space For Null Terminator

Type Overrun

STR52-CPP Use valid references, pointers, and iterators to reference
elements of a basic_string

Use After Free

STR53-CPP Range check element access Buffer Overrun

Buffer

Underrun

Tainted Buffer Access

Type Overrun

Type

Underrun

